Enzymatic properties of mouse 25-hydroxyvitamin D3 1 alpha-hydroxylase expressed in Escherichia coli. (57/17751)

Renal 25-hydroxyvitamin D3 1 alpha-hydroxylase cDNA cloned from the kidneys of mice lacking the vitamin D receptor was expressed in Escherichia coli JM109. As expected, the bacterially-expressed enzyme catalyzes the 1 alpha-hydroxylation of 25-hydroxyvitamin D3 with a Michaelis constant, K(m), value of 2.7 microM. Unexpectedly, the enzyme also hydroxylates the 1 alpha-position of 24,25-dihydroxyvitamin D3 with a K(m) of 1.3 microM, and a fourfold higher Vmax/K(m) compared with the 25-hydroxyvitamin D3 hydroxylase activity, suggesting that 24,25-dihydroxyvitamin D3 is a better substrate than 25-hydroxyvitamin D3 for 1 alpha-hydroxylase. In addition, the enzyme showed 1 alpha-hydroxylase activity toward 24-oxo-25-hydroxyvitamin D3. However, it showed only slight activity towards 23,25-dihydroxyvitamin D3 and 24-oxo-23,25-dihydroxyvitamin D3, and no detectable activity towards vitamin D3 and 24,25,26,27-tetranor-23-hydroxyvitamin D3. These results suggest that the 25-hydroxyl group of vitamin D3 is essential for the 1 alpha-hydroxylase activity and the 24-hydroxyl group enhances the activity, but the 23-hydroxyl group greatly reduced the activity. Another remarkable finding is that living recombinant E. coli cells can convert the substrates into the 1 alpha-hydroxylated products, suggesting the presence of a redox partner of 1 alpha-hydroxylase in E. coli cells.  (+info)

The cyclic structure of microcin J25, a 21-residue peptide antibiotic from Escherichia coli. (58/17751)

Microcin J25 (MccJ25) is the single representative of the immunity group J of the microcin group of peptide antibiotics produced by Enterobacteriaceae. It induces bacterial filamentation in susceptible cells in a non-SOS-dependent pathway [R. A. Salomon and R. Farias (1992) J. Bacteriol. 174, 7428-7435]. MccJ25 was purified to homogeneity from the growth medium of a microcin-overproducing Escherichia coli strain by reverse-phase HPLC. Based on amino acid composition and absolute configuration determination, liquid secondary ion and electrospray mass spectrometry, extensive two-dimensional NMR, enzymatic and chemical degradations studies, the structure of MccJ25 was elucidated as a 21-residue peptide, cyclo(-Val1-Gly-Ile-Gly-Thr- Pro-Ile-Ser-Phe-Tyr-Gly-Gly-Gly-Ala-Gly-His-Val-Pro-Glu-Tyr-Phe21- ). Although MccJ25 showed high resistance to most of endoproteases, linearization by thermolysin occurred from cleavage at the Phe21-Val1 bond and led to a single peptide, MccJ25-L. While MccJ25 exhibited remarkable antibiotic activity towards Salmonella newport and several E. coli strains (minimal inhibitory concentrations ranging between 0.01 and 0.2 microgram.mL-1), the thermolysin-linearized microcin showed a dramatic decrease of the activity, indicating that the cyclic structure is essential for the MccJ25 biological properties. As MccJ25 is ribosomally synthesized as a larger peptide precursor endowed with an N-terminal extremity, the present study shows that removal of this extension and head-tail cyclization of the resulting propeptide are the only post-translational modifications involved in the maturation of MccJ25, that appears as the first cyclic microcin.  (+info)

N-glycan structures of matrix metalloproteinase-1 derived from human fibroblasts and from HT-1080 fibrosarcoma cells. (59/17751)

Matrix metalloproteinase-1 (MMP-1) is a collagenolytic metalloproteinase capable of cleaving native triple-helical forms of several collagen subtypes, as well as a number of non-collagenous substrates. The role of MMP-1 in various diseases affecting the connective tissue is well characterized. MMP-1 is secreted as both glycosylated and unglycosylated species, and the two forms have been shown to be identical with respect to substrate specificity, specific activity and inhibitory profile. No function for the glycan moiety of the enzyme has been ascribed to date. In the present study, we report on the detailed characterization of MMP-1-derived oligosaccharides. Using strategies based on sequential exoglycosidase digestion combined with matrix-assisted laser desorption ionization-time of flight MS and electrospray tandem MS, we have characterized the N-glycan structures of MMP-1, derived from human dermal fibroblasts and from the HT-1080 fibrosarcoma cell line. MMP-1 derived from fibroblasts was found to carry mainly alpha 2,3-sialylated complex-type diantennary glycans. On the other hand, HT-1080 cells produce MMP-1 that has a heterogeneous glycosylation pattern, comprising diantennary glycans carrying Lewis X, LacdiNAc, sialylated LacdiNAc and GalNAc beta 1,4 (Fuc alpha 1,3)GlcNAc (LacdiNAc analogue of Lewis X) as terminal elements. We also show that, of the two potential glycosylation sites in the MMP-1 sequence, only Asn120 is used.  (+info)

Structural analysis of the lipopolysaccharide oligosaccharide epitopes expressed by a capsule-deficient strain of Haemophilus influenzae Rd. (60/17751)

Structural elucidation of the lipopolysaccharide (LPS) of Haemophilus influenzae, strain Rd, a capsule-deficient type d strain, has been achieved by using high-field NMR techniques and electrospray ionization-mass spectrometry (ESI-MS) on delipidated LPS and core oligosaccharide samples. It was found that this organism expresses heterogeneous populations of LPS of which the oligosaccharide (OS) epitopes are subject to phase variation. ESI-MS of O-deacylated LPS revealed a series of related structures differing in the number of hexose residues linked to a conserved inner-core element, L-alpha-D-Hepp-(1-->2)-L-alpha-D-Hepp-(1-->3)-[beta-D-Glcp- (1-->4)-]- L-alpha-D-Hepp-(1-->5)-alpha-Kdo, and the degree of phosphorylation. The structures of the major LPS glycoforms containing three (two Glc and one Gal), four (two Glc and two Gal) and five (two Glc, two Gal and one GalNAc) hexoses were substituted by both phosphocholine (PCho) and phosphoethanolamine (PEtn) and were determined in detail. In the major glycoform, Hex3, a lactose unit, beta-D-Galp-(1-->4)-beta-D-Glcp, is attached at the O-2 position of the terminal heptose of the inner-core element. The Hex4 glycoform contains the PK epitope, alpha-D-Galp-(1-->4)-beta-D-Galp-(1-->4)-beta-D-Glcp while in the Hex5 glycoform, this OS is elongated by the addition of a terminal beta-D-GalpNAc residue, giving the P antigen, beta-D-GalpNAc-(1-->3)-alpha-D-Galp-(1-->4)-beta-D-Galp-(1-->4)-D-Glc p. The fully extended LPS glycoform (Hex5) has the following structure. [see text] The structural data provide the first definitive evidence demonstrating the expression of a globotetraose OS epitope, the P antigen, in LPS of H. influenzae. It is noteworthy that the molecular environment in which PCho units are found differs from that observed in an Rd- derived mutant strain (RM.118-28) [Risberg, A., Schweda, E. K. H. & Jansson, P-E. (1997) Eur. J. Biochem. 243, 701-707].  (+info)

Evidence of noncovalent dimerization of calmodulin. (61/17751)

Calcium-binding proteins, such as S-100, dimerize readily, and this phenomenon plays an important role in their regulation of target enzymes [Krebs, J., Quadroni, M. & Van Eldik, L.J. (1995) Nat. Struct. Biol. 2, 711-714; Kilby, P.M., Van Eldik, L.J. & Roberts, G. C. (1996) Structure 4, 1041-1052]. We have investigated by Fourier-transform ion cyclotron resonance (FTICR) MS the conformational states of the calcium-binding protein calmodulin, and present clear evidence for a calmodulin dimer formed as a result of noncovalent interactions between folded monomers. Ultra-high-resolution electrospray ionization (ESI) mass spectra for calmodulin, obtained with a 9.4 T FTICR mass spectrometer, are presented. With the use of denaturing solutions (1 : 1 acetonitrile/water + 1% formic acid), relatively high charge states (20 < z < 10) of monomeric calmodulin ions were detected, whereas when calmodulin was electrosprayed from buffer, monomers ions with only 5-10 charges were detected. CD measurements for calmodulin in buffered solution revealed that its alpha-helical content was significantly higher than that for calmodulin in acetonitrile/water solutions, consistent with a proposition that changes in charge state distributions observed in the MS experiments reflect differing states of calmodulin folding. Under buffered conditions, noncovalently bound calmodulin dimers were observed by ESI FTICR MS. Analytical ultracentrifugation experiments carried out in the same solution conditions as those used in the MS experiments were consistent with the proposed calmodulin dimer-monomer equilibrium. The ultra-high mass resolution achieved with the 9.4 T FTICR mass spectrometer allowed unequivocal identification of the noncovalent, as opposed to covalent, character of the calmodulin dimer.  (+info)

Degradation of ciprofloxacin by basidiomycetes and identification of metabolites generated by the brown rot fungus Gloeophyllum striatum. (62/17751)

Ciprofloxacin (CIP), a fluoroquinolone antibacterial drug, is widely used in the treatment of serious infections in humans. Its degradation by basidiomycetous fungi was studied by monitoring 14CO2 production from [14C]CIP in liquid cultures. Sixteen species inhabiting wood, soil, humus, or animal dung produced up to 35% 14CO2 during 8 weeks of incubation. Despite some low rates of 14CO2 formation, all species tested had reduced the antibacterial activity of CIP in supernatants to between 0 and 33% after 13 weeks. Gloeophyllum striatum was used to identify the metabolites formed from CIP. After 8 weeks, mycelia had produced 17 and 10% 14CO2 from C-4 and the piperazinyl moiety, respectively, although more than half of CIP (applied at 10 ppm) had been transformed into metabolites already after 90 h. The structures of 11 metabolites were elucidated by high-performance liquid chromatography combined with electrospray ionization mass spectrometry and 1H nuclear magnetic resonance spectroscopy. They fell into four categories as follows: (i) monohydroxylated congeners, (ii) dihydroxylated congeners, (iii) an isatin-type compound, proving elimination of C-2, and (iv) metabolites indicating both elimination and degradation of the piperazinyl moiety. A metabolic scheme previously described for enrofloxacin degradation could be confirmed and extended. A new type of metabolite, 6-defluoro-6-hydroxy-deethylene-CIP, provided confirmatory evidence for the proposed network of congeners. This may result from sequential hydroxylation of CIP and its congeners by hydroxyl radicals. Our findings reveal for the first time the widespread potential for CIP degradation among basidiomycetes inhabiting various environments, including agricultural soils and animal dung.  (+info)

A new antibiotic XK-90. II. The structure of XK-90. (63/17751)

The new antibiotic, XK-90, produced by Streptomyces sp. is active against Gram-positive and Gram-negative bacteria. The structure has been determined as N-acetyl-N'-(3-formyl-4-hydroxyphenyl)hydrazine (1) and is the second example of a naturally occurring antibiotic having the phenylhydrazine skeleton.  (+info)

Metabolism of threo-beta-methylmalate by a soil bacterium. (64/17751)

Studies on threo-beta-methylmalate metabolism in a soil bacterium of the genus Bacillus which can utilize threo-beta-methylmalate as a sole carbon source were carried out. When DL-threo-beta-methylmalate was incubated with a cell-free extract of the bacterium, citramalate was found to be formed. Similarly, formation of threo-beta-methylmalate from DL-citramalate was confirmed. These dicarbosylic acids were identified by gas chromatography-mass spectrometry. Examination of inducibility, substrate specificity, and cofactor requirement of the enzymes involved in the reactions showed the existence of two interconversion reactions between the threo-beta-methylmalate and citramalate. One was an interconversion reaction between L-threo-beta-methylmalate and L-citramalate via mesaconate and the other was an interconversion reaction between D-threo-beta-methylmalate and D-citramalate via citraconate. These reactions were both reversible and were catalyzed by distinct and inducible enzymes. It is suggested that the two reactions participate in the catabolism of threo-beta-methylmalate.  (+info)