Ancient geodynamics and global-scale hydrology on Mars. (17/195)

Loading of the lithosphere of Mars by the Tharsis rise explains much of the global shape and long-wavelength gravity field of the planet, including a ring of negative gravity anomalies and a topographic trough around Tharsis, as well as gravity anomaly and topographic highs centered in Arabia Terra and extending northward toward Utopia. The Tharsis-induced trough and antipodal high were largely in place by the end of the Noachian Epoch and exerted control on the location and orientation of valley networks. The release of carbon dioxide and water accompanying the emplacement of approximately 3 x 10(8) cubic kilometers of Tharsis magmas may have sustained a warmer climate than at present, enabling the formation of ancient valley networks and fluvial landscape denudation in and adjacent to the large-scale trough.  (+info)

Search for life on Mars. (18/195)

A multi-user integrated suite of instruments designed to optimize the search for evidence of life on Mars is described. The package includes: -Surface inspection and surface environment analysis to identify the potential Mars landing sites, to inspect the surface geology and mineralogy, to search for visible surficial microbial macrofossils, to study the surface radiation budget and surface oxidation processes, to search for niches for extant life. -Subsurface sample acquisition by core drilling -Analysis of surface and subsurface minerals and organics to characterize the surface mineralogy, to analyse the surface and subsurface oxidants, to analyse the mineralogy of subsurface aliquots, to analyse the organics present in the subsurface aliquots (elemental and molecular composition, isotopes, chirality). -Macroscopic and microscopic inspection of subsurface aliquots to search for life's indicators (paleontological, biological, mineralogical) and to characterize the mineralogy of the subsurface aliquots. The study is led by ESA Manned Spaceflight and Microgravity Directorate.  (+info)

Formation of recent martian debris flows by melting of near-surface ground ice at high obliquity. (19/195)

The observation of small gullies associated with recent surface runoff on Mars has renewed the question of liquid water stability at the surface of Mars. The gullies could be formed by groundwater seepage from underground aquifers; however, observations of gullies originating from isolated peaks and dune crests question this scenario. We show that these landforms may result from the melting of water ice in the top few meters of the martian subsurface at high obliquity. Our conclusions are based on the analogy between the martian gullies and terrestrial debris flows observed in Greenland and numerical simulations that show that above-freezing temperatures can occur at high obliquities in the near surface of Mars, and that such temperatures are only predicted at latitudes and for slope orientations corresponding to where the gullies have been observed on Mars.  (+info)

Seasonal variations of snow depth on Mars. (20/195)

Using topography collected over one martian year from the Mars Orbiter Laser Altimeter on the Mars Global Surveyor (MGS) spacecraft, we have measured temporal changes in the elevation of the martian surface that correlate with the seasonal cycle of carbon dioxide exchange between the surface and atmosphere. The greatest elevation change (1.5 to 2 meters) occurs at high latitudes ( above 80 degrees ), whereas the bulk of the mass exchange occurs at lower latitudes (below 75 degrees N and below 73 degrees S). An unexpected period of sublimation was observed during northern hemisphere autumn, coincident with dust storms in the southern hemisphere. Analysis of MGS Doppler tracking residuals revealed temporal variations in the flattening of Mars that correlate with elevation changes. The combined changes in gravity and elevation constrain the average density of seasonally deposited carbon dioxide to be 910 +/- 230 kilograms per cubic meter, which is considerably denser than terrestrial snow.  (+info)

Observational evidence for an active surface reservoir of solid carbon dioxide on Mars. (21/195)

High-resolution images of the south polar residual cap of Mars acquired in 1999 and 2001 show changes in the configuration of pits, intervening ridges, and isolated mounds. Escarpments have retreated 1 to 3 meters in 1 martian year, changes that are an order of magnitude larger than can be explained by the sublimation of water ice, but close to what is expected for sublimation of carbon dioxide ice. These observations support a 35-year-old conjecture that Mars has a large surface reservoir of solid carbon dioxide. The erosion implies that this reservoir is not in equilibrium with the present environment and that global climate change is occurring on Mars.  (+info)

Global distribution of neutrons from Mars: results from Mars odyssey. (22/195)

Global distributions of thermal, epithermal, and fast neutron fluxes have been mapped during late southern summer/northern winter using the Mars Odyssey Neutron Spectrometer. These fluxes are selectively sensitive to the vertical and lateral spatial distributions of H and CO2 in the uppermost meter of the martian surface. Poleward of +/-60 degrees latitude is terrain rich in hydrogen, probably H2O ice buried beneath tens of centimeter-thick hydrogen-poor soil. The central portion of the north polar cap is covered by a thick CO2 layer, as is the residual south polar cap. Portions of the low to middle latitudes indicate subsurface deposits of chemically and/or physically bound H2O and/or OH.  (+info)

Maps of subsurface hydrogen from the high energy neutron detector, Mars Odyssey. (23/195)

After 55 days of mapping by the High Energy Neutron Detector onboard Mars Odyssey, we found deficits of high-energy neutrons in the southern highlands and northern lowlands of Mars. These deficits indicate that hydrogen is concentrated in the subsurface. Modeling suggests that water ice-rich layers that are tens of centimeters in thickness provide one possible fit to the data.  (+info)

Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits. (24/195)

Using the Gamma-Ray Spectrometer on the Mars Odyssey, we have identified two regions near the poles that are enriched in hydrogen. The data indicate the presence of a subsurface layer enriched in hydrogen overlain by a hydrogen-poor layer. The thickness of the upper layer decreases with decreasing distance to the pole, ranging from a column density of about 150 grams per square centimeter at -42 degrees latitude to about 40 grams per square centimeter at -77 degrees. The hydrogen-rich regions correlate with regions of predicted ice stability. We suggest that the host of the hydrogen in the subsurface layer is ice, which constitutes 35 +/- 15% of the layer by weight.  (+info)