Characterization of mdcR, a regulatory gene of the malonate catabolic system in Klebsiella pneumoniae. (1/454)

The Klebsiella pneumoniae mdcR gene, which encodes a LysR-type regulator, was overexpressed in Escherichia coli. Purified MdcR was found to bind specifically to the control region of either the malonate decarboxylase (mdc) genes or mdcR. We have also demonstrated that MdcR is an activator of the expression of the mdc genes, whereas it represses the transcription of the putative control region of mdcR, PmdcR, indicating a negative autoregulatory control.  (+info)

Demonstration of a new mammalian isoleucine catabolic pathway yielding an Rseries of metabolites. (2/454)

1. Normal human urine contains small amounts (less than 4 mg/g of creatinine) of 2-ethylhydracrylic acid, formed, we believe, by a previously undisclosed endogenous catabolic pathway for the oxidation of a newly described series of R metabolites of isoleucine. 2. Urinary excretion of 2-ethylhydracrylic acid is variably increased in defects of isoleucine oxidation at distal steps in the catabolic pathway (3-oxoacyl-CoA thiolase deficiency and methylmalonyl-CoA mutase deficiency) and is diminished when proximal steps of the oxidative pathway are blocked as in branched-chain oxo acid decarboxylase deficiency ('maple-syrup-urine' disease). 3. Precursors of R-pathway metabolites [R(-)-2-methylbutyrate and 2-ethylacrylate ] lead to increased 2-ethylhydracrylate excretion in the mammal(rat, rabbit and dog); the corresponding S metabolites [S(+)-2-methylbutyric acid and tiglic acid ], when given in equimolar amounts, have little effect on its excretion, suggesting that little or no interconversion between S and R metabolites occurs in vivo. 4. Studies with 2H-labelled precursors indicate that conversion of R 2-methylbutyrate into 2-ethylhydracrylic acid occurs by a direct pathway (apparently via 2-ethylacrylic acid). 5. The further oxidation of 2-ethylhydracrylic acid to ethylmalonic acid was demonstrated, and may be analogous to S-metabolite oxidation via methyl malonate. 6. Valine metabolites do not interact with the R=isoleucine pathway under the conditions of these experiments in vivo.  (+info)

Extended therapeutic window for caspase inhibition and synergy with MK-801 in the treatment of cerebral histotoxic hypoxia. (3/454)

In rats, striatal histotoxic hypoxic lesions produced by the mitochondrial toxin malonate resemble those of focal cerebral ischemia. Intrastriatal injections of malonate induced cleavage of caspase-2 beginning at 6 h, and caspase-3-like activity as identified by DEVD biotin affinity-labeling within 12 h. DEVD affinity-labeling was prevented and lesion volume reduced in transgenic mice overexpressing BCL-2 in neuronal cells. Intrastriatal injection of the tripeptide, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD-fmk), a caspase inhibitor, at 3 h, 6 h, or 9 h after malonate injections reduced the lesion volume produced by malonate. A combination of pretreatment with the NMDA antagonist, dizocilpine (MK-801), and delayed treatment with zVAD-fmk provided synergistic protection compared with either treatment alone and extended the therapeutic window for caspase inhibition to 12 h. Treatment with cycloheximide and zVAD-fmk, but not with MK-801, blocked the malonate-induced cleavage of caspase-2. NMDA injections alone resulted in a weak caspase-2 cleavage. These results suggest that malonate toxicity induces neuronal death by more than one pathway. They strongly implicate early excitotoxicity and delayed caspase activation in neuronal loss after focal ischemic lesions and offer a new strategy for the treatment of stroke.  (+info)

Anaerobic mineralization of quaternary carbon atoms: isolation of denitrifying bacteria on dimethylmalonate. (4/454)

The microbial capacity to degrade simple organic compounds with quaternary carbon atoms was demonstrated by enrichment and isolation of five denitrifying strains on dimethylmalonate as the sole electron donor and carbon source. Quantitative growth experiments showed a complete mineralization of dimethylmalonate. According to phylogenetic analysis of the complete 16S rRNA genes, two strains isolated from activated sewage sludge were related to the genus Paracoccus within the alpha-Proteobacteria (98.0 and 98.2% 16S rRNA gene similarity to Paracoccus denitrificans(T)), and three strains isolated from freshwater ditches were affiliated with the beta-Proteobacteria (97.4 and 98.3% 16S rRNA gene similarity to Herbaspirillum seropedicae(T) and Acidovorax facilis(T), respectively). Most-probable-number determinations for denitrifying populations in sewage sludge yielded 4.6 x 10(4) dimethylmalonate-utilizing cells ml(-1), representing up to 0.4% of the total culturable nitrate-reducing population.  (+info)

Identification of the yeast mitochondrial transporter for oxaloacetate and sulfate. (5/454)

Saccharomyces cerevisiae encodes 35 members of the mitochondrial carrier family, including the OAC protein. The transport specificities of some family members are known, but most are not. The function of the OAC has been revealed by overproduction in Escherichia coli, reconstitution into liposomes, and demonstration that the proteoliposomes transport malonate, oxaloacetate, sulfate, and thiosulfate. Reconstituted OAC catalyzes both unidirectional transport and exchange of substrates. In S. cerevisiae, OAC is in inner mitochondrial membranes, and deletion of its gene greatly reduces transport of oxaloacetate sulfate, thiosulfate, and malonate. Mitochondria from wild-type cells swelled in isoosmotic solutions of ammonium salts of oxaloacetate, sulfate, thiosulfate, and malonate, indicating that these anions are cotransported with protons. Overexpression of OAC in the deletion strain increased greatly the [(35)S]sulfate/sulfate and [(35)S]sulfate/oxaloacetate exchanges in proteoliposomes reconstituted with digitonin extracts of mitochondria. The main physiological role of OAC appears to be to use the proton-motive force to take up into mitochondria oxaloacetate produced from pyruvate by cytoplasmic pyruvate carboxylase.  (+info)

Determining and understanding the control of flux. An illustration in submitochondrial particles of how to validate schemes of metabolic control. (6/454)

Two complementary methods were used to determine how the rate of respiration and that of ATP hydrolysis were controlled in rat liver submitochondrial particles. In the first, 'direct control analysis' method, respiration was titrated with malonate, antimycin or cyanide at 20, 30 and 37 degrees C, to determine the flux control exerted by succinate dehydrogenase, cytochrome bc1 complex and cytochrome c oxidase, respectively. Together, the three respiratory complexes only controlled the flux by about 50%, leaving the other 50% of flux control to the H+ leak. In the second, 'elasticity based' method, the elasticity coefficients of the respiratory chain or the H+-ATPase and the H+ leak towards the H+ gradient were determined. Then, the flux control coefficients were calculated using the connectivity and summation laws of metabolic control theory. The correspondence between the flux control coefficients determined in the two ways validated the two methods. This allowed us to use the second method to analyse what was the kinetic origin of the observed distribution of control. Control of ATP hydrolysis by the ATPase decreased with increasing ATPase activity; hence, the control exerted by the H+ leak increased with increasing ATPase activity, due to a diminishing elasticity towards the H+ gradient. Reverse electron transport was mainly controlled by the ATPase; the sum of flux control coefficients of succinate dehydrogenase, NADH-CoQ oxidoreductase, and H+-ATPase yielded a value greater than one, indicating that the H+ leak exerted a significant negative control on this pathway.  (+info)

Functional evaluation of the genes involved in malonate decarboxylation by Acinetobacter calcoaceticus. (7/454)

The genomic locus containing the potential repressor gene mdcY (inactivated by a putative IS3 element) and the mdcLMACDEGBH genes from Acinetobacter calcoaceticus was cloned and sequenced. In order to evaluate the biochemical function of the protein components, the genes were expressed independently and their activities predicted by database analysis. The mdcA gene product, the alpha subunit, was found to be malonate/acetyl-CoA transferase and the mdcD gene product, the beta subunit, was found to be malonyl-CoA decarboxylase. The mdcE gene product, the gamma subunit, may play a role in subunit interaction to form a stable complex or as a codecarboxylase. The mdcC gene product, the delta subunit, was an acyl-carrier protein, which has a unique CoA-like prosthetic group. Various combinations of malonate decarboxylase subunits allowed us to estimate their contribution to malonyl-CoA decarboxylase activity. The prosthetic group was identified as carboxymethylated 2'-(5"-phosphoribosyl)-3'-dephospho-CoA by mass spectrometry. The mdcH gene product was determined to have malonyl-CoA/dephospho-CoA acyltransferase activity. Using database analysis mdcLM, mdcG, mdcB and mdcI were estimated to be the genes for a malonate transporter, a holo-acyl carrier synthase, protein for the formation of precursor of the prosthetic group and a regulatory protein, respectively. From the data shown above we propose a metabolic pathway for malonate in A. calcoaceticus.  (+info)

Methylmalonicacidemia: biochemical heterogeneity in defects of 5'-deoxyadenosylcobalamin synthesis. (8/454)

We measured the synthesis of 5'-deoxyadenosylcobalamin (AdoCbl) in fibroblast extracts from patients with inherited methylmalonicacidemia due to deficient activity of the cobalamin-dependent holoenzyme, methylmalonyl-CoA mutase (EC 5.4.99.2). Previous studies with intact fibroblasts from patients whose holoenzyme deficiency was secondary to abnormal cobalamin metabolism had defined two phenotypes, one in which whole cells failed to accumulate AdoCbl and a second in which they failed to accumulate both AdoCbl and the second cobalamin coenzyme, methylcobalamin. With a broken cell assay of AdoCbl synthesis in cell extracts and the cell lines are named cbl A mutants; the other class shows severe deficiency of AdoCbl synthesis and the cell lines are named cbl B mutants. We define cbl C mutants as those in which both AdoCbl and methylcobalamin fail to accumulate in intact cells. The assay for AdoCbl synthesis is thought to measure two enzymatic activities, cob(II)alamin reductase (EC 1.6.99.9) and cob(I)alamin adenosyltransferase (EC 2.5.1.17). Subcellular fractionation studies place this combined activity in mitochondria.  (+info)