Optimization of magnesium therapy after severe diffuse axonal brain injury in rats. (1/764)

A number of studies have demonstrated that magnesium salts given after traumatic brain injury improve subsequent neurologic outcome. However, given that these earlier studies have used a number of different salts, dosages, and routes of administration, follow-up studies of the neuroprotective properties of magnesium are complicated, with comparisons to the earlier literature virtually impossible. The present study has therefore characterized the dose-response characteristics of the most commonly used sulfate and chloride salts of magnesium in a severe model of diffuse traumatic axonal injury in rats. Both magnesium salts improved neurologic outcome in rats when administered as a bolus at 30 min after injury. The i.v. and i.m. optima of each salt was 250 micromol/kg and 750 micromol/kg, respectively. The identical concentrations required for improved neurologic outcome suggest that improvement in outcome was dependent on the magnesium cation and not the associated anion. Subsequent magnetic resonance studies demonstrated that the administered magnesium penetrated the blood-brain barrier after injury and resulted in an increased brain intracellular free magnesium concentration and associated bioenergetic state as reflected in the cytosolic phosphorylation potential. Both of these metabolic parameters positively correlated with resultant neurologic outcome measured daily in the same animals immediately before the magnetic resonance determinations.  (+info)

The formation of DNA interstrand cross-links by a novel bis-[Pt2Cl4(diminazene aceturate)2]Cl4.4H2O complex inhibits the B to Z transition. (2/764)

We present data demonstrating that the cytotoxic compound [Pt2Cl4(diminazene aceturate)2]Cl4.4H2O (Pt-berenil) circumvents cisplatin resistance in ovarian carcinoma cells. The analysis of the interaction of Pt-berenil with linear and supercoiled DNA indicates that this compound induces the formation of a large number of covalent interstrand cross-links on DNA and that this number is significantly higher than that produced by cis-diamminedichloroplatinum(II) (cis-DDP). Renaturation experiments, interstrand cross-link assays, and electron microscopy indicate that the kinetics of DNA interstrand cross-link formation caused by Pt-berenil binding is faster than that caused by cis-DDP at similar levels of platinum bound to DNA. Furthermore, the number of DNA interstrand cross-links in Pt-berenil-DNA complexes is influenced by supercoiling. Circular dichroism experiments show that Pt-berenil strongly inhibits the B-DNA-to-Z-DNA transition of poly(dG-m5 dC). poly(dG-m5dC) at salt concentrations (3 mM MgCl2) at which the native methylated polynucleotide readily adopts the Z-DNA conformation, which suggests that the induction of interstrand cross-links by Pt-berenil inhibits the Z-DNA transition. On the basis of these results, we propose that bis(platinum) compounds with structure similar to Pt-berenil may act as blockers of DNA conformational changes and may also display activity in cisplatin-resistant cells.  (+info)

Ca2+ is required for phosphorylation of clam p82/CPEB in vitro: implications for dual and independent roles of MAP and Cdc2 kinases. (3/764)

During early development gene expression is controlled principally at the translational level. Oocytes of the surf clam Spisula solidissima contain large stockpiles of maternal mRNAs which are translationally dormant or masked until meiotic maturation. Fertilisation of the oocyte leads to rapid polysomal recruitment of the abundant cyclin and ribonucleotide reductase mRNAs at about the time they undergo cytoplasmic polyadenylation. Clam p82, a 3' UTR RNA-binding protein, and a member of the CPEB (cytoplasmic polyadenylation element binding protein) family, functions as a translational masking factor in oocytes and as a polyadenylation factor in fertilised eggs. In meiotically maturing clam oocytes, p82/CPEB is rapidly phosphorylated on multiple residues to a 92-kDa apparent size, prior to its degradation during the first cell cleavage. Here we examine the protein kinase(s) that phosphorylates clam p82/CPEB using a clam oocyte activation cell-free system that responds to elevated pH, mirroring the pH rise that accompanies fertilisation. We show that p82/CPEB phosphorylation requires Ca2+ (<100 microM) in addition to raised pH. Examination of the calcium dependency combined with the use of specific inhibitors implicates the combined and independent actions of cdc2 and MAP kinases in p82/CPEB phosphorylation. Calcium is necessary for both the activation and the maintenance of MAP kinase, whose activity is transient in vitro, as in vivo. While cdc2 kinase plays a role in the maintenance of MAP kinase activity, it is not required for the activation of MAP kinase. We propose a model of clam p82/CPEB phosphorylation in which MAP kinase initially phosphorylates clam p82/CPEB, at a minor subset of sites that does not alter its migration, and cdc2 kinase is necessary for the second wave of phosphorylation that results in the large mobility size shift of clam p82/CPEB. The possible roles of phosphorylation for the function and regulation of p82/CPEB are discussed.  (+info)

Potassium ion efflux induced by cationic compounds in yeast. (4/764)

Potassium efflux in yeast induced by several cationic compounds showed different characteristics. All of the observed efflux required glucose as substrate at the concentrations used. For most of them, the phenomenon required binding of the cationic compound to the cell surface and increased with the negative cell surface charge, and for all the compounds tested, it depended on a metabolizable substrate. Efflux induced with terbium chloride appeared more likely due to the function of a K+/H+ antiporter. With DEAE-dextran and dihydrostreptomycin, potassium efflux was dependent on the cell potassium content and was also sensitive to osmotic changes of the medium. DEAE-dextran-provoked efflux was not due to cell disruption. Dihydrostreptomycin seemed to activate a potassium efflux system which could not be studied in isolation, but its inhibition of potassium uptake may also be involved. Except for cells treated with ethidium bromide, no appreciable cell disruption was observed. The potassium efflux observed appears to be a membrane phenomenon reversible after washing with magnesium chloride.  (+info)

The accessory subunit of Xenopus laevis mitochondrial DNA polymerase gamma increases processivity of the catalytic subunit of human DNA polymerase gamma and is related to class II aminoacyl-tRNA synthetases. (5/764)

Peptide sequences obtained from the accessory subunit of Xenopus laevis mitochondrial DNA (mtDNA) polymerase gamma (pol gamma) were used to clone the cDNA encoding this protein. Amino-terminal sequencing of the mitochondrial protein indicated the presence of a 44-amino-acid mitochondrial targeting sequence, leaving a predicted mature protein with 419 amino acids and a molecular mass of 47.3 kDa. This protein is associated with the larger, catalytic subunit in preparations of active mtDNA polymerase. The small subunit exhibits homology to its human, mouse, and Drosophila counterparts. Interestingly, significant homology to glycyl-tRNA synthetases from prokaryotic organisms reveals a likely evolutionary relationship. Since attempts to produce an enzymatically active recombinant catalytic subunit of Xenopus DNA pol gamma have not been successful, we tested the effects of adding the small subunit of the Xenopus enzyme to the catalytic subunit of human DNA pol gamma purified from baculovirus-infected insect cells. These experiments provide the first functional evidence that the small subunit of DNA pol gamma stimulates processive DNA synthesis by the human catalytic subunit under physiological salt conditions.  (+info)

Magnesium-dependent folding of self-splicing RNA: exploring the link between cooperativity, thermodynamics, and kinetics. (6/764)

Folding of the Tetrahymena self-splicing RNA into its active conformation involves a set of discrete intermediate states. The Mg2+-dependent equilibrium transition from the intermediates to the native structure is more cooperative than the formation of the intermediates from the unfolded states. We show that the degree of cooperativity is linked to the free energy of each transition and that the rate of the slow transition from the intermediates to the native state decreases exponentially with increasing Mg2+ concentration. Monovalent salts, which stabilize the folded RNA nonspecifically, induce states that fold in less than 30 s after Mg2+ is added to the RNA. A simple model is proposed that predicts the folding kinetics from the Mg2+-dependent change in the relative stabilities of the intermediate and native states.  (+info)

Xeroderma pigmentosum variant (XP-V) correcting protein from HeLa cells has a thymine dimer bypass DNA polymerase activity. (7/764)

Xeroderma pigmentosum variant (XP-V) represents one of the most common forms of this cancer-prone DNA repair syndrome. Unlike classical XP cells, XP-V cells are normal in nucleotide excision repair but defective in post-replication repair. The precise molecular defect in XP-V is currently unknown, but it appears to be a protein involved in translesion synthesis. Here we established a sensitive assay system using an SV40 origin-based plasmid to detect XP-V complementation activity. Using this system, we isolated a protein from HeLa cells capable of complementing the defects in XP-V cell extracts. The protein displays novel DNA polymerase activity which replicates cyclobutane pyrimidine dimer-containing DNA templates. The XPV polymerase activity was dependent on MgCl2, sensitive to NEM, moderately sensitive to KCl, resistant to both aphidicolin and ddTTP, and not stimulated by PCNA. In glycerol density gradients, the activity co-sedimented with a 54 kDa polypeptide at 3.5S, indicating that the monomeric form of this polypeptide was responsible for the activity. The protein factor corrected the translesion defects of extracts from three XPV cell strains. Bypass DNA synthesis by the XP-V polymerase occurred only in the presence of dATP, indicating that it can incorporate only dATP to bypass a di-thymine lesion.  (+info)

Polyphosphoinositides inhibit the interaction of vinculin with actin filaments. (8/764)

Binding of vinculin to adhesion plaque proteins is restricted by an intramolecular association of vinculin's head and tail regions. Results of previous work suggest that polyphosphoinositides disrupt this interaction and thereby promote binding of vinculin to both talin and actin. However, data presented here show that phosphatidylinositol 4,5-bisphosphate (PI4,5P2) inhibits the interaction of purified tail domain with F-actin. Upon re-examining the effect of PI4,5P2 on the actin and talin-binding activities of intact vinculin, we find that when the experimental design controls for the effect of magnesium on aggregation of PI4,5P2 micelles, polyphosphoinositides promote interactions with the talin-binding domain, but block interactions of the actin-binding domain. In contrast, if vinculin is trapped in an open confirmation by a peptide specific for the talin-binding domain of vinculin, actin binding is allowed. These results demonstrate that activation of the actin-binding activity of vinculin requires steps other than or in addition to the binding of PI4,5P2.  (+info)