The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. (33/32182)

Recently, Salmonella spp. were shown to induce apoptosis in infected macrophages. The mechanism responsible for this process is unknown. In this report, we establish that the Inv-Spa type III secretion apparatus target invasin SipB is necessary and sufficient for the induction of apoptosis. Purified SipB microinjected into macrophages led to cell death. Binding studies show that SipB associates with the proapoptotic protease caspase-1. This interaction results in the activation of caspase-1, as seen in its proteolytic maturation and the processing of its substrate interleukin-1beta. Caspase-1 activity is essential for the cytotoxicity. Functional inhibition of caspase-1 activity by acetyl-Tyr-Val-Ala-Asp-chloromethyl ketone blocks macrophage cytotoxicity, and macrophages lacking caspase-1 are not susceptible to Salmonella-induced apoptosis. Taken together, the data demonstrate that SipB functions as an analog of the Shigella invasin IpaB.  (+info)

Early ontogeny of monocytes and macrophages in the pig. (34/32182)

Prenatal development of cord blood monocytes and tissue macrophages was studied in pig foetuses by immunophenotyping and functional assays. The function of peripheral blood monocytes was compared in germ-free and conventional piglets. First macrophages were identified by electron microscopy in foetal liver on the 25th day of gestation. Monoclonal antibodies against porcine CD45 and SWC3 antigens were used for flow cytometric identification of myelomonocytic cells in cell suspensions prepared from the yolk sac, foetal liver, spleen and cord blood. Leukocytes expressing the common myelomonocytic antigen SWC3 were found in all organs studied since the earliest stages of development. Opsonized zymosan ingestion assay was used to determine the phagocytic capacity of foetal mononuclear phagocytes isolated from cord blood, liver and spleen. In the foetal liver, avid phagocytosis of apoptic cells had been found to occur before cells were able to ingest zymosan in vitro. The first cells capable of ingesting zymosan particles were found on the 40th day of gestation in umbilical blood and 17 days later in foetal spleen and liver. Their relative proportion increased with age. Cord blood monocytes and peripheral blood monocytes in germ-free piglets had low oxidatory burst activity as shown by iodonitrophenyl tetrazolium reduction assay. A remarkable increase of oxidatory burst activity was observed in conventional piglets, probably due to activation of immune mechanisms by the microflora colonizing gastrointestinal tract.  (+info)

Killing kinetics of intracellular Afipia felis treated with amikacin. (35/32182)

Afipia felis is a facultative intracellular bacterium which multiplies in macrophages following inhibition of phagosome-lysosome (P-L) fusion. When A. felis-infected cells are incubated for 72 h with various antibiotics, only aminoglycosides are found to be bactericidal. We therefore studied the killing of intracellular A. felis by amikacin, and its relationship with the restoration of P-L fusion. Amikacin reduced the number of A. felis from 8.5 x 10(5) to 3.5 x 102 cfu/mL within 94 h. P-L fusion was restored after 30-40 h of incubation with amikacin. Both mechanisms may participate in the intracellular killing of bacteria.  (+info)

A functional, discontinuous HIV-1 gp120 C3/C4 domain-derived, branched, synthetic peptide that binds to CD4 and inhibits MIP-1alpha chemokine binding. (36/32182)

This paper describes a branched synthetic peptide [3.7] that incorporates sequence discontinuous residues of HIV-1 gp120 constant regions. The approach was to bring together residues of gp120 known to interact with human cell membranes such that the peptide could fold to mimic the native molecule. The peptide incorporates elements of both the conserved CD4 and CCR5 binding sites. The 3.7 peptide, which cannot be produced by conventional genetic engineering methods, is recognized by antiserum raised to native gp120. The peptide also binds to CD4 and competitively inhibits binding of QS4120 an antibody directed against the CDR2 region of CD4. When preincubated with the CD4+ve MM6 macrophage cell line, which expresses mRNA for the CCR3 and CCR5 chemokine receptors, both 3.7 and gp120 inhibit binding of the chemokine MIP-1alpha. The peptide also inhibits infection of primary macrophages by M-tropic HIV-1. Thus, 3.7 is a prototype candidate peptide for a vaccine against HIV-1 and represents a novel approach to the rational design of peptides that can mimic complex sequence discontinuous ligand binding sites of clinically relevant proteins.  (+info)

Cholesteryl ester hydrolysis in J774 macrophages occurs in the cytoplasm and lysosomes. (37/32182)

The relationship of cholesteryl ester hydrolysis to the physical state of the cholesteryl ester in J774 murine macrophages was explored in cells induced to store cholesteryl esters either in anisotropic (ordered) inclusions or isotropic (liquid) inclusions. In contrast to other cell systems, the rate of cholesteryl ester hydrolysis was faster in cells containing anisotropic inclusions than in cells containing isotropic inclusions. Two contributing factors were identified. Kinetic analyses of the rates of hydrolysis are consistent with a substrate competition by co-deposited triglyceride in cells with isotropic inclusions. In addition, hydrolysis of cholesteryl esters in cells with anisotropic droplets is mediated by both cytoplasmic and lysosomal lipolytic enzymes, as shown by using the lysosomotropic agent, chloroquine, and an inhibitor of neutral cholesteryl ester hydrolase, umbelliferyl diethylphosphate. In cells containing anisotropic inclusions, hydrolysis was partially inhibited by incubation in media containing either chloroquine or umbelliferyl diethylphosphate. Together, chloroquine and umbelliferyl diethylphosphate completely inhibited hydrolysis. However, when cells containing isotropic inclusions were incubated with umbelliferyl diethylphosphate, cholesteryl ester hydrolysis was completely inhibited, but chloroquine had no effect. Transmission electron microscopy demonstrated a primarily lysosomal location for lipid droplets in cells with anisotropic droplets and both non-lysosomal and lysosomal populations of lipid droplets in cells with isotropic droplets. These results support the conclusion that there is a lysosomal component to the hydrolysis of stored cholesteryl esters in foam cells.  (+info)

Plasmalogen status influences docosahexaenoic acid levels in a macrophage cell line. Insights using ether lipid-deficient variants. (38/32182)

Previously, this laboratory reported the isolation of variants, RAW. 12 and RAW.108, from the macrophage-like cell line RAW 264.7 that are defective in plasmalogen biosynthesis [Zoeller, R.A. et al. 1992. J. Biol. Chem. 267: 8299-8306]. Fatty acid analysis showed significant changes in the mutants in the ethanolamine phospholipids (PE), the only phospholipid class in which the plasmalogen species, plasmenylethanolamine, contributes significantly. Within the PE fraction, docosapentaenoic (DPA; 22:5n-3) and docosahexaenoic (DHA; 22:6n-3) acids were reduced by approximately 50% in the variants while the levels of arachidonic acid (AA; 20:4n-6) remained unaffected. The decrease in DHA was accompanied by a 50% decrease in labeling PE with [3H]DHA over a 90-min period. Restoration of plasmenylethanolamine by supplementing the growth medium with sn -1-hexadecylglycerol (HG) completely reversed these changes in RAW. 108. Pre-existing pools of plasmenylethanolamine were not required for restoration of normal [3H]DHA labeling; addition of HG only during the labeling period was sufficient. Due to the loss of Delta1'-desaturase in RAW.12, HG supplementation resulted in the accumulation of plasmenylethanolamine's immediate biosynthetic precursor, plasmanylethanolamine. Even though this latter phospholipid contained only the ether functionality (lacking the vinyl ether double bond) it was sufficient to restore wild type-like fatty acid composition and DHA labeling of the ethanolamine phospholipids, identifying the ether bond as a structural determinant for this specificity. In summary, we have used these mutants to establish that the plasmalogen status of a cell can influence the levels of certain polyunsaturated fatty acids. These results support the notion that certain polyunsaturated fatty acids, such as DHA, can be selectively targeted to plasmalogens and that this targeting occurs during de novo biosynthesis, or shortly thereafter, through modification of nascent plasmalogen pools.  (+info)

Apolipoprotein B stimulates formation of monocyte-macrophage surface-connected compartments and mediates uptake of low density lipoprotein-derived liposomes into these compartments. (39/32182)

Much of the cholesterol that accumulates in atherosclerotic plaques is found within monocyte-macrophages transforming these cells into "foam cells." Native low density lipoprotein (LDL) does not cause foam cell formation. Treatment of LDL with cholesterol esterase converts LDL into cholesterol-rich liposomes having >90% cholesterol in unesterified form. Similar cholesterol-rich liposomes are found in early developing atherosclerotic plaques surrounding foam cells. We now show that cholesterol-rich liposomes produced from cholesterol esterase-treated LDL can cause human monocyte-macrophage foam cell formation inducing a 3-5-fold increase in macrophage cholesterol content of which >60% is esterified. Although cytochalasin D inhibited LDL liposome-induced macrophage cholesteryl ester accumulation, LDL liposomes did not enter macrophages by phagocytosis. Rather, the LDL liposomes induced and entered surface-connected compartments within the macrophages, a unique endocytic pathway in these cells that we call patocytosis. LDL liposome apoB rather than LDL liposome lipid mediated LDL liposome uptake by macrophages. This was shown by the findings that: 1) protease treatment of the LDL liposomes prevented macrophage cholesterol accumulation; 2) liposomes prepared from LDL lipid extracts did not cause macrophage cholesterol accumulation; and 3) purified apoB induced and accumulated within macrophage surface-connected compartments. Although apoB mediated the macrophage uptake of LDL liposomes, this uptake did not occur through LDL, LDL receptor-related protein, or scavenger receptors. Also, LDL liposome uptake was not sensitive to treatment of macrophages with trypsin or heparinase. Cholesterol esterase-mediated transformation of LDL into cholesterol-rich liposomes is an LDL modification that: 1) stimulates uptake of LDL cholesterol by apoB-dependent endocytosis into surface-connected compartments, and 2) causes human monocyte-macrophage foam cell formation.  (+info)

Induction of macrophage C-C chemokine expression by titanium alloy and bone cement particles. (40/32182)

Particulate wear debris is associated with periprosthetic inflammation and loosening in total joint arthroplasty. We tested the effects of titanium alloy (Ti-alloy) and PMMA particles on monocyte/macrophage expression of the C-C chemokines, monocyte chemoattractant protein-1 (MCP-1), monocyte inflammatory protein-1 alpha (MIP-1alpha), and regulated upon activation normal T expressed and secreted protein (RANTES). Periprosthetic granulomatous tissue was analysed for expression of macrophage chemokines by immunohistochemistry. Chemokine expression in human monocytes/macrophages exposed to Ti-alloy and PMMA particles in vitro was determined by RT-PCR, ELISA and monocyte migration. We observed MCP-1 and MIP-1alpha expression in all tissue samples from failed arthroplasties. Ti-alloy and PMMA particles increased expression of MCP-1 and MIP-1alpha in macrophages in vitro in a dose- and time-dependent manner whereas RANTES was not detected. mRNA signal levels for MCP-1 and MIP-1alpha were also observed in cells after exposure to particles. Monocyte migration was stimulated by culture medium collected from macrophages exposed to Ti-alloy and PMMA particles. Antibodies to MCP-1 and MIP-1alpha inhibited chemotactic activity of the culture medium samples. Release of C-C chemokines by macrophages in response to wear particles may contribute to chronic inflammation at the bone-implant interface in total joint arthroplasty.  (+info)