Adoptive transfer of genetically modified macrophages elucidated TGF-beta-mediated 'self-defence' of the glomerulus against local action of macrophages. (25/32182)

TGF-beta has several anti-inflammatory properties which may be relevant to prevention of or recovery from acute glomerular inflammation. Using genetically modified mesangial cells and a technique for in vivo macrophage transfer, this article provides evidence for TGF-beta-mediated 'self-defence' of the glomerulus against macrophages. Rat mesangial cells stably transfected with TGF-beta1 showed a blunted response to the macrophage-derived, proinflammatory cytokine IL-1beta. In contrast, mesangial cells expressing the dominant-interfering TGF-beta receptor showed an enhanced response to IL-1. Similarly, externally added TGF-beta1 inhibited the cytokine response of normal glomeruli, and isolated nephritic glomeruli producing active TGF-beta1 showed a depressed response to IL-1beta, compared to normal glomeruli. Consistent with these in vitro results, in vivo transfer of activated macrophages revealed that the TGF-beta-producing glomeruli are insensitive to the effector action of macrophages. These results indicate that TGF-beta1 functions as an endogenous 'defender' that counteracts local action of activated macrophages in the glomerulus.  (+info)

Effects of the Chinese traditional medicine mao-bushi-saishin-to on therapeutic efficacy of a new benzoxazinorifamycin, KRM-1648, against Mycobacterium avium infection in mice. (26/32182)

The Chinese traditional medicine mao-bushi-saishin-to (MBST), which has anti-inflammatory effects and has been used to treat the common cold and nasal allergy in Japan, was examined for its effects on the therapeutic activity of a new benzoxazinorifamycin, KRM-1648 (KRM), against Mycobacterium avium complex (MAC) infection in mice. In addition, we examined the effects of MBST on the anti-MAC activity of murine peritoneal macrophages (M phi s). First, MBST significantly increased the anti-MAC therapeutic activity of KRM when given to mice in combination with KRM, although MBST alone did not exhibit such effects. Second, MBST treatment of M phi s significantly enhanced the KRM-mediated killing of MAC bacteria residing in M phi s, although MBST alone did not potentiate the M phi anti-MAC activity. MBST-treated M phi s showed decreased levels of reactive nitrogen intermediate (RNI) release, suggesting that RNIs are not decisive in the expression of the anti-MAC activity of such M phi populations. MBST partially blocked the interleukin-10 (IL-10) production of MAC-infected M phi s without affecting their transforming growth factor beta (TGF-beta)-producing activity. Reverse transcription-PCR analysis of the lung tissues of MAC-infected mice at weeks 4 and 8 after infection revealed a marked increase in the levels of tumor necrosis factor alpha, gamma interferon (IFN-gamma), IL-10, and TGF-beta mRNAs. KRM treatment of infected mice tended to decrease the levels of the test cytokine mRNAs, except that it increased TGF-beta mRNA expression at week 4. MBST treatment did not affect the levels of any cytokine mRNAs at week 8, while it down-regulated cytokine mRNA expression at week 4. At week 8, treatment of mice with a combination of KRM and MBST caused a marked decrease in the levels of the test cytokines mRNAs, especially IL-10 and IFN-gamma mRNAs, although such effects were obscure at week 4. These findings suggest that down-regulation of the expression of IL-10 and TGF-beta is related to the combined therapeutic effects of KRM and MBST against MAC infection.  (+info)

Fluoroquinolone action against clinical isolates of Mycobacterium tuberculosis: effects of a C-8 methoxyl group on survival in liquid media and in human macrophages. (27/32182)

When the lethal action of a C-8 methoxyl fluoroquinolone against clinical isolates of Mycobacterium tuberculosis in liquid medium was measured, the compound was found to be three to four times more effective (as determined by measuring the 90% lethal dose) than a C-8-H control fluoroquinolone or ciprofloxacin against cells having a wild-type gyrA (gyrase) gene. Against ciprofloxacin-resistant strains, the C-8 methoxyl group enhanced lethality when alanine was replaced by valine at position 90 of the GyrA protein or when aspartic acid 94 was replaced by glycine, histidine, or tyrosine. During infection of a human macrophage model by wild-type Mycobacterium bovis BCG, the C-8 methoxyl group lowered survival 20- to 100-fold compared with the same concentration of a C-8-H fluoroquinolone. The C-8 methoxyl fluoroquinolone was also more effective than ciprofloxacin against a gyrA Asn94 mutant of M. bovis BCG. In an M. tuberculosis-macrophage system the C-8 methoxyl group improved fluoroquinolone action against both quinolone-susceptible and quinolone-resistant clinical isolates. Thus, a C-8 methoxyl group enhances the bactericidal activity of quinolones with N1-cyclopropyl substitutions; these data encourage further refinement of fluoroquinolones as antituberculosis agents.  (+info)

The iron transport protein NRAMP2 is an integral membrane glycoprotein that colocalizes with transferrin in recycling endosomes. (28/32182)

The natural resistance associated macrophage protein (Nramp) gene family is composed of two members in mammals, Nramp1 and Nramp2. Nramp1 is expressed primarily in macrophages and mutations at this locus cause susceptibility to infectious diseases. Nramp2 has a much broader range of tissue expression and mutations at Nramp2 result in iron deficiency, indicating a role for Nramp2 in iron metabolism. To get further insight into the function and mechanism of action of Nramp proteins, we have generated isoform specific anti-Nramp1 and anti-Nramp2 antisera. Immunoblotting experiments indicate that Nramp2 is present in a number of cell types, including hemopoietic precursors, and is coexpressed with Nramp1 in primary macrophages and macrophage cell lines. Nramp2 is expressed as a 90-100-kD integral membrane protein extensively modified by glycosylation (>40% of molecular mass). Subcellular localization studies by immunofluorescence and confocal microscopy indicate distinct and nonoverlapping localization for Nramp1 and Nramp2. Nramp1 is expressed in the lysosomal compartment, whereas Nramp2 is not detectable in the lysosomes but is expressed primarily in recycling endosomes and also, to a lower extent, at the plasma membrane, colocalizing with transferrin. These findings suggest that Nramp2 plays a key role in the metabolism of transferrin-bound iron by transporting free Fe2+ across the endosomal membrane and into the cytoplasm.  (+info)

Expression of stromelysin-3 in atherosclerotic lesions: regulation via CD40-CD40 ligand signaling in vitro and in vivo. (29/32182)

Stromelysin-3 is an unusual matrix metalloproteinase, being released in the active rather than zymogen form and having a distinct substrate specificity, targeting serine proteinase inhibitors (serpins), which regulate cellular functions involved in atherosclerosis. We report here that human atherosclerotic plaques (n = 7) express stromelysin-3 in situ, whereas fatty streaks (n = 5) and normal arterial specimens (n = 5) contain little or no stromelysin-3. Stromelysin-3 mRNA and protein colocalized with endothelial cells, smooth muscle cells, and macrophages within the lesion. In vitro, usual inducers of matrix metalloproteinases such as interleukin-1, interferon-gamma, or tumor necrosis factor alpha did not augment stromelysin-3 in vascular wall cells. However, T cell-derived as well as recombinant CD40 ligand (CD40L, CD154), an inflammatory mediator recently localized in atheroma, induced de novo synthesis of stromelysin-3. In addition, stromelysin-3 mRNA and protein colocalized with CD40L and CD40 within atheroma. In accordance with the in situ and in vitro data obtained with human material, interruption of the CD40-CD40L signaling pathway in low density lipoprotein receptor-deficient hyperlipidemic mice substantially decreased expression of the enzyme within atherosclerotic plaques. These observations establish the expression of the unusual matrix metalloproteinase stromelysin-3 in human atherosclerotic lesions and implicate CD40-CD40L signaling in its regulation, thus providing a possible new pathway that triggers complications within atherosclerotic lesions.  (+info)

Selective recruitment of CCR4-bearing Th2 cells toward antigen-presenting cells by the CC chemokines thymus and activation-regulated chemokine and macrophage-derived chemokine. (30/32182)

Helper T cells are classified into Th1 and Th2 subsets based on their profiles of cytokine production. Th1 cells are involved in cell-mediated immunity, whereas Th2 cells induce humoral responses. Selective recruitment of these two subsets depends on specific adhesion molecules and specific chemoattractants. Here, we demonstrate that the T cell-directed CC chemokine thymus and activation-regulated chemokine (TARC) was abundantly produced by monocytes treated with granulocyte macrophage colony stimulating factor (GM-CSF) or IL-3, especially in the presence of IL-4 and by dendritic cells derived from monocytes cultured with GM-CSF + IL-4. The receptor for TARC and another macrophage/dendritic cell-derived CC chemokine macrophage-derived chemokine (MDC) is CCR4, a G protein-coupled receptor. CCR4 was found to be expressed on approximately 20% of adult peripheral blood effector/memory CD4+ T cells. T cells attracted by TARC and MDC generated cell lines predominantly producing Th2-type cytokines, IL-4 and IL-5. Fractionated CCR4+ cells but not CCR4- cells also selectively gave rise to Th2-type cell lines. When naive CD4+ T cells from adult peripheral blood were polarized in vitro, Th2-type cells selectively expressed CCR4 and vigorously migrated toward TARC and MDC. Taken together, CCR4 is selectively expressed on Th2-type T cells and antigen-presenting cells may recruit Th2 cells expressing CCR4 by producing TARC and MDC in Th2-dominant conditions.  (+info)

Oxidized low-density lipoprotein regulates matrix metalloproteinase-9 and its tissue inhibitor in human monocyte-derived macrophages. (31/32182)

BACKGROUND: Macrophages in human atherosclerotic plaques produce a family of matrix metalloproteinases (MMPs), which may influence vascular remodeling and plaque disruption. Because oxidized LDL (ox-LDL) is implicated in many proatherogenic events, we hypothesized that ox-LDL would regulate expression of MMP-9 and tissue inhibitor of metalloproteinase-1 (TIMP-1) in monocyte-derived macrophages. MWRHOSA AND RESULTS: Mononuclear cells were isolated from normal human subjects with Ficoll-Paque density gradient centrifugation, and adherent cells were allowed to differentiate into macrophages during 7 days of culture in plastic dishes. On day 7, by use of serum-free medium, the macrophages were incubated with various concentrations of native LDL (n-LDL) and copper-oxidized LDL. Exposure to ox-LDL (10 to 50 microg/mL) increased MMP-9 mRNA expression as analyzed by Northern blot, protein expression as measured by ELISA and Western blot, and gelatinolytic activity as determined by zymography. The increase in MMP-9 expression was associated with increased nuclear binding of transcription factor NF-kappaB and AP-1 complex on electromobility shift assay. In contrast, ox-LDL (10 to 50 microg/mL) decreased TIMP-1 expression. Ox-LDL-induced increase in MMP-9 expression was abrogated by HDL (100 microg/mL). n-LDL had no significant effect on MMP-9 or TIMP-1 expression. CONCLUSIONS: These data demonstrate that unlike n-LDL, ox-LDL upregulates MMP-9 expression while reducing TIMP-1 expression in monocyte-derived macrophages. Furthermore, HDL abrogates ox-LDL-induced MMP-9 expression. Thus, ox-LDL may contribute to macrophage-mediated matrix breakdown in the atherosclerotic plaques, thereby predisposing them to plaque disruption and/or vascular remodeling.  (+info)

p38 but not p44/42 mitogen-activated protein kinase is required for nitric oxide synthase induction mediated by lipopolysaccharide in RAW 264.7 macrophages. (32/32182)

Protein kinase C (PKC)-alpha, -betaI, and -delta are known to be involved in the lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 macrophages. The role of mitogen-activated protein kinases (MAPK) p44/42 and p38 in the LPS effect was studied further. LPS-mediated NO release and the inducible form of NO synthase expression were inhibited by the p38 inhibitor, SB 203580, but not by the MAPK kinase inhibitor, PD 98059. Ten-minute treatment of cells with LPS resulted in the activation of p44/42 MAPK, p38, and c-Jun NH2-terminal kinase. Marked or slight activation, respectively, of p44/42 MAPK or p38 was also seen after 10-min treatment with 12-O-tetradecanoylphorbol-13-acetate, but c-Jun NH2-terminal kinase activation did not occur. Tyrosine kinase inhibitor, genestein, attenuated the LPS-induced activation of both p44/42 MAPK and p38, whereas the PKC inhibitors, Ro 31-8220 and calphostin C, or long-term treatment with 12-O-tetradecanoylphorbol-13-acetate resulted in inhibition of p44/42 MAPK activation, but had only a slight effect on p38 activation, indicating that LPS-mediated PKC activation resulted in the activation of p44/42 MAPK. Nuclear factor-kappaB (NF-kappaB)-specific DNA-protein-binding activity in the nuclear extracts was enhanced by 10-min, 1-h, or 24-h treatment with LPS. Analysis of the proteins involved in NF-kappaB binding showed translocation of p65 from the cytosol to the nucleus after 10-min treatment with LPS. The onset of NF-kappaB activation correlated with the cytosolic degradation of both inhibitory proteins of NF-kappaB, IkappaB-alpha and IkappaB-beta. IkappaB-alpha was resynthesized rapidly after loss (1-h LPS treatment), whereas IkappaB-beta levels were not restored until after 24-h treatment. SB 203580 but not PD 98059 inhibited the LPS-induced stimulation of NF-kappaB DNA-protein binding. Thus, activation of p38 but not p44/42 MAPK by LPS resulted in the stimulation of NF-kappaB-specific DNA-protein binding and the subsequent expression of inducible form of NO synthase and NO release in RAW 264.7 macrophages.  (+info)