Rac-dependent anti-apoptotic signaling by the insulin receptor cytoplasmic domain. (33/1430)

Mutations in the cytoplasmic domain of the insulin receptor that block the ability of the receptor to stimulate glucose uptake do not block the receptor's ability to inhibit apoptosis (Boehm, J. E., Chaika, O. V., and Lewis, R. E. (1998) J. Biol. Chem. 273, 7169-7176). To characterize this survival pathway we used a chimeric receptor (CSF1R/IR) consisting of the ligand-binding domain of the colony-stimulating factor-1 receptor spliced to the cytoplasmic domain of the insulin receptor and a mutated version of the chimeric receptor containing a 12-amino acid deletion of the juxtamembrane domain (CSF1R/IRDelta960). In addition to the inhibition of apoptosis, activation of either the CSF1R/IR or the CSF1R/IRDelta960 rapidly induced membrane ruffling in Rat1 fibroblasts. The small GTPase Rac mediates membrane ruffling. Activated and dominant-inhibitory mutants of Rac and other small GTPases were expressed in Rat1 fibroblasts to examine a potential link between the intracellular pathways that induce membrane ruffling and promote cell survival. The anti-apoptotic action of the CSF1R/IRDelta960 was reversed by dominant-inhibitory Rac(N17), but not by Ras(N17) or Cdc42(N17). Activated Rac(V12), but not Ras(D12) or Cdc42(V12), promoted cell survival in the absence of insulin. These data implicate Rac as a mediator of an unique anti-apoptotic signaling pathway activated by the insulin receptor cytoplasmic domain.  (+info)

RANK is essential for osteoclast and lymph node development. (34/1430)

The physiological role of the TNF receptor (TNFR) family member, RANK, was investigated by generating RANK-deficient mice. RANK(-/-) mice were characterized by profound osteopetrosis resulting from an apparent block in osteoclast differentiation. RANK expression was not required for the commitment, differentiation, and functional maturation of macrophages and dendritic cells from their myeloid precursors but provided a necessary and specific signal for the differentiation of myeloid-derived osteoclasts. RANK(-/-) mice also exhibited a marked deficiency of B cells in the spleen. RANK(-/-) mice retained mucosal-associated lymphoid tissues including Peyer's patches but completely lacked all other peripheral lymph nodes, highlighting an additional major role for RANK in lymph node formation. These experiments reveal that RANK provides critical signals necessary for lymph node organogenesis and osteoclast differentiation.  (+info)

Adenosine inhibits macrophage colony-stimulating factor-dependent proliferation of macrophages through the induction of p27kip-1 expression. (35/1430)

Adenosine is produced during inflammation and modulates different functional activities in macrophages. In murine bone marrow-derived macrophages, adenosine inhibits M-CSF-dependent proliferation with an IC50 of 45 microM. Only specific agonists that can activate A2B adenosine receptors such as 5'-N-ethylcarboxamidoadenosine, but not those active on A1 (N6-(R)-phenylisopropyladenosine), A2A ([p-(2-carbonylethyl)phenylethylamino]-5'-N-ethylcarboxamido adenosine), or A3 (N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide) receptors, induce the generation of cAMP and modulate macrophage proliferation. This suggests that adenosine regulates macrophage proliferation by interacting with the A2B receptor and subsequently inducing the production of cAMP. In fact, both 8-Br-cAMP (IC50 85 microM) and forskolin (IC50 7 microM) inhibit macrophage proliferation. Moreover, the inhibition of adenylyl cyclase and protein kinase A blocks the inhibitory effect of adenosine and its analogues on macrophage proliferation. Adenosine causes an arrest of macrophages at the G1 phase of the cell cycle without altering the activation of the extracellular-regulated protein kinase pathway. The treatment of macrophages with adenosine induces the expression of p27kip-1, a G1 cyclin-dependent kinase inhibitor, in a protein kinase A-dependent way. Moreover, the involvement of p27kip-1 in the adenosine inhibition of macrophage proliferation was confirmed using macrophages from mice with a disrupted p27kip-1 gene. These results demonstrate that adenosine inhibits macrophage proliferation through a mechanism that involves binding to A2B adenosine receptor, the generation of cAMP, and the induction of p27kip-1 expression.  (+info)

Low M(r) phosphotyrosine protein phosphatase activity on fibroblast growth factor receptor is not associated with enzyme translocation. (36/1430)

Fibroblast growth factor receptor (class IV) shares a certain degree of similarity with class III members like platelet-derived growth factor and macrophage-colony-stimulating factor receptors, which, once activated, are substrates of low M(r) phosphotyrosine protein phosphatase. Up until now no phosphotyrosine phosphatase has been shown to act on this receptor in vivo. Here we demonstrate that low M(r) phosphotyrosine protein phosphatase is able to reduce receptor tyrosine phosphorylation and cell proliferation in response to basic fibroblast growth factor. Contrary to what was previously observed for platelet-derived growth factor, during cell stimulation with basic fibroblast growth factor, no enzyme redistribution among cellular compartments is observed.  (+info)

Development of systemic immunity to glioblastoma multiforme using tumor cells genetically engineered to express the membrane-associated isoform of macrophage colony-stimulating factor. (37/1430)

We investigated the ability of Fischer rat T9 glioblastoma cells transduced with cDNA genes for the secreted (s) or membrane-associated (m) isoform of M-CSF to elicit an antitumor response when implanted into syngeneic animals. Intracranial (i.c.) implantation of 1 x 10(5) T9 cells expressing mM-CSF (T9/mM-CSF) resulted in 80% tumor rejection. Electron microscopy of the T9/mM-CSF tumor site, 2-4 days postimplantation, showed marked infiltration by macrophages, many of which were in physical contact with the T9/mM-CSF cells. Animals that rejected T9/mM-CSF cells were resistant to i.c. rechallenge with T9 cells, but not syngeneic MadB106 breast adenocarcinoma cells, suggesting that T9-specific immunity can be generated within the brain via the endogenous APCs. Intracranial injection of parental T9, vector control (T9/LXSN), or T9 cells secreting M-CSF (T9/sM-CSF) was 100% fatal. Subcutaneous injection of 1 x 10(7) T9/sM-CSF, T9/LXSN, or parental T9 cells resulted in progressive tumors. In contrast, T9/mM-CSF cells injected s.c. were destroyed in 7-10 days and animals developed systemic immunity to parental T9 cells. Passive transfer of CD3+ T cells from the spleens of immune rats into naive recipients transferred T9 glioma-specific immunity. In vitro, splenocytes from T9/mM-CSF-immunized rats specifically proliferated in response to various syngeneic glioma stimulator cells. However, only marginal T cell-mediated cytotoxicity was observed by these splenocytes in a CTL assay against T9 target cells, regardless of restimulation with T9 cells. Subcutaneous immunization with viable T9/mM-CSF cells was effective in eradicating i.c. T9 tumors.  (+info)

Effect of all-trans-retinoic acid on c-fms proto-oncogene [colony-stimulating factor 1 (CSF-1) receptor] expression and CSF-1-induced invasion and anchorage-independent growth of human breast carcinoma cells. (38/1430)

Abnormal expression of c-fms proto-oncogene, which encodes for the macrophage colony-stimulating factor-1 (CSF-1) receptor, has been observed in a variety of carcinomas of epithelial origin, including those of the breast. Here, we have investigated the effect of retinoic acid (RA), an important regulator of normal differentiation of mammary epithelial tissues, on the expression of the c-fms gene and CSF-1/CSF-1 receptor-induced invasion and anchorage-independent growth in breast carcinoma cells. We have demonstrated that all-trans-RA (atRA) significantly increases levels of c-fms transcripts in the estrogen receptor-negative but RA receptor alpha-positive breast carcinoma cell lines BT20 and SKBR3. The atRA-induced increase in fms transcript levels was completely abolished by RO41-5253, a synthetic RA receptor alpha antagonist. Our results indicate that atRA could enhance fms expression by up-regulating the activity of the first promoter of the fms gene. DNase I protection, mobility shift, and mutational analysis revealed that a potential activator protein 1 (AP-1) site in the first fms promoter sequence could mediate the observed atRA effect on fms transcription. Our results also showed that atRA, by itself and in the presence of CSF-1, can increase the ability of breast carcinoma cells to invade in vitro. Furthermore, we demonstrated that atRA is able to abolish the CSF-1-induced increase in anchorage-independent growth of breast carcinoma cells without affecting the anchorage-dependent growth. In summary, our findings suggest that retinoids may play conflicting roles throughout breast cancer progression, depending on the stage of cancer development. Although retinoids might suppress growth at the early stages of tumor formation, they might promote malignant transformation at later stages by stimulating the invasive capacity of certain cell variants in the breast tumor population.  (+info)

CD137 induces proliferation and endomitosis in monocytes. (39/1430)

Peripheral monocytes are short-lived and are replenished from hematopoietic stem cells whose proliferation is believed to be confined to the bone marrow. Human peripheral monocytes are assumed not to be able to proliferate. In this study we show that CD137 (ILA/4-1BB), a member of the tumor necrosis factor receptor family, induces a widespread and profound proliferation of human peripheral monocytes. Macrophage colony-stimulating factor and granulocyte-macrophage colony-stimulating factor are essential, but not sufficient for proliferation. Additional soluble autocrine factors induced by CD137 are required. Induction of proliferation is mediated via reverse signaling through a CD137 ligand, expressed constitutively by peripheral monocytes. The ability of CD137 to induce proliferation in human peripheral monocytes is not shared by any other known molecule.  (+info)

ARF6 is required for growth factor- and rac-mediated membrane ruffling in macrophages at a stage distal to rac membrane targeting. (40/1430)

Activation of Rac1, a member of the Rho family of GTPases, is associated with multiple cellular responses, including membrane ruffling and focal complex formation. The mechanisms by which Rac1 is coupled to these functional responses are not well understood. It was recently shown that ARF6, a GTPase implicated in cytoskeletal alterations and a membrane recycling pathway, is required for Rac1-dependent phagocytosis in macrophages (Q. Zhang et al., J. Biol. Chem. 273:19977-19981, 1998). To determine whether ARF6 is required for Rac1-dependent cytoskeletal responses in macrophages, we expressed wild-type (WT) or guanine nucleotide binding-deficient alleles (T27N) of ARF6 in macrophages coexpressing activated alleles of Rac1 (Q61L) or Cdc42 (Q61L) or stimulated with colony-stimulating factor 1 (CSF-1). Expression of ARF6 T27N but not ARF6 WT inhibited ruffles mediated by Rac1 Q61L or CSF-1. In contrast, expression of ARF6 T27N did not inhibit Rac1 Q61L-mediated focal complex formation and did not impair Cdc42 Q61L-mediated filopodial formation. Cryoimmunogold electron microscopy demonstrated the presence of ARF6 in membrane ruffles induced by either CSF-1 or Rac1 Q61L. Addition of CSF-1 to macrophages led to the redistribution of ARF6 from the interior of the cell to the plasma membrane, suggesting that this growth factor triggers ARF6 activation. Direct targeting of Rac1 to the plasma membrane did not bypass the blockade in ruffling induced by ARF6 T27N, indicating that ARF6 regulates a pathway leading to membrane ruffling that occurs after the activation and membrane association of Rac. These data demonstrate that intact ARF6 function is required for coupling activated Rac to one of several effector pathways and suggest that a principal function of ARF6 is to coordinate Rac activation with plasma membrane-based protrusive events.  (+info)