Autolysosomal membrane-associated betaine homocysteine methyltransferase. Limited degradation fragment of a sequestered cytosolic enzyme monitoring autophagy. (57/6965)

We compared the membrane proteins of autolysosomes isolated from leupeptin-administered rat liver with those of lysosomes. In addition to many polypeptides common to the two membranes, the autolysosomal membranes were found to be more enriched in endoplasmic reticulum lumenal proteins (protein-disulfide isomerase, calreticulin, ER60, BiP) and endosome/Golgi markers (cation-independent mannose 6-phosphate receptor, transferrin receptor, Golgi 58-kDa protein) than lysosomal membranes. The autolysosomal membrane proteins include three polypeptides (44, 35, and 32 kDa) whose amino-terminal sequences have not yet been reported. Combining immunoblotting and reverse transcriptase-polymerase chain reaction analyses, we identified the 44-kDa peptide as the intact subunit of betaine homocysteine methyltransferase and the 35- and 32-kDa peptides as two proteolytic fragments. Pronase digestion of autolysosomes revealed that the 44-kDa and 32-kDa peptides are present in the lumen, whereas the 35-kDa peptide is not. In primary hepatocyte cultures, the starvation-induced accumulation of the 32-kDa peptide occurs in the presence of E64d, showing that the 32-kDa peptide is formed from the sequestered 44-kDa peptide during autophagy. The accumulation is induced by rapamycin but completely inhibited by wortmannin, 3-methyladenine, and bafilomycin. Thus, detection of the 32-kDa peptide by immunoblotting can be used as a streamlined assay for monitoring autophagy.  (+info)

Trafficking of Shigella lipopolysaccharide in polarized intestinal epithelial cells. (58/6965)

Bacterial lipopolysaccharide (LPS) at the apical surface of polarized intestinal epithelial cells was previously shown to be transported from the apical to the basolateral pole of the epithelium (Beatty, W.L., and P.J. Sansonetti. 1997. Infect. Immun. 65:4395-4404). The present study was designed to elucidate the transcytotic pathway of LPS and to characterize the endocytic compartments involved in this process. Confocal and electron microscopic analyses revealed that LPS internalized at the apical surface became rapidly distributed within endosomal compartments accessible to basolaterally internalized transferrin. This compartment largely excluded fluid-phase markers added at either pole. Access to the basolateral side of the epithelium subsequent to trafficking to basolateral endosomes occurred via exocytosis into the paracellular space beneath the intercellular tight junctions. LPS appeared to exploit other endocytic routes with much of the internalized LPS recycled to the original apical membrane. In addition, analysis of LPS in association with markers of the endocytic network revealed that some LPS was sent to late endosomal and lysosomal compartments.  (+info)

Synaptotagmin II negatively regulates Ca2+-triggered exocytosis of lysosomes in mast cells. (59/6965)

Synaptotagmins (Syts) I and II are believed to act as Ca2+ sensors in the control of neurotransmission. Here we demonstrate that mast cells express Syt II in their lysosomal fraction. We further show that activation of mast cells by either aggregation of FcepsilonRI or by Ca2+ ionophores results in exocytosis of lysosomes, in addition to the well documented exocytosis of their secretory granules. Syt II directly regulates lysosomal exocytosis, whereby overexpression of Syt II inhibited Ca2+-triggered release of the lysosomal processed form of cathepsin D, whereas suppression of Syt II expression markedly potentiated this release. These findings provide evidence for a novel function of Syt II in negatively regulating Ca2+-triggered exocytosis of lysosomes, and suggest that Syt II-regulated secretion from lysosomes may play an important role in mast cell biology.  (+info)

Association of microfilament bundles with lysosomes in polymorphonuclear leukocytes. (60/6965)

The juxtaposition of microfilament bundles and lysosomes seen both in thin-sectioned cells in the transmission electron microscope and in cryofractured cells in the scanning electron microscope, and the presence of short filamentous structures between lysosomes and microfilament bundles, suggest that microfilaments may be attached to lysosomal membranes and that these filaments may be involved in lysosomal movements. Further work is in progress to test these hypotheses.  (+info)

Sialidase-mediated depletion of GM2 ganglioside in Tay-Sachs neuroglia cells. (61/6965)

Tay-Sachs disease is a severe, inherited disease of the nervous system caused by accumulation of the brain lipid GM2 ganglioside. Mouse models of Tay-Sachs disease have revealed a metabolic bypass of the genetic defect based on the more potent activity of the enzyme sialidase towards GM2. To determine whether increasing the level of sialidase would produce a similar effect in human Tay-Sachs cells, we introduced a human sialidase cDNA into neuroglia cells derived from a Tay-Sachs fetus and demonstrated a dramatic reduction in the accumulated GM2. This outcome confirmed the reversibility of GM2 accumulation and opens the way to pharmacological induction or activation of sialidase for the treatment of human Tay-Sachs disease.  (+info)

Stable expression of protective protein/cathepsin A-green fluorescent protein fusion genes in a fibroblastic cell line from a galactosialidosis patient. Model system for revealing the intracellular transport of normal and mutated lysosomal enzymes. (62/6965)

Fibroblastic cell lines derived from a galactosialidosis patient, stably expressing the chimaeric green fluorescent protein variant (EGFP) gene fused to the wild-type and mutant human lysosomal protective protein/cathepsin A (PPCA) cDNA, were first established as a model system for revealing the sorting and processing of lysosomal enzymes and for investigating the molecular bases of their deficiencies. In the cell line expressing the wild-type PPCA-EGFP chimaera gene (EGFP-PPwild), an 81 kDa form (27 kDa EGFP fused to the C-terminus of the 54 kDa PPCA precursor) was produced, then processed into the mature 32/20 kDa two-chain form free of the EGFP domain. The intracellular cathepsin A, alpha-N-acetylneuraminidase and beta-galactosidase activities, which are deficient in the parent fibroblastic cells, could also be significantly restored in the cells. In contrast with the uniform and strong fluorescence throughout the cytoplasm and nucleus in the mock-cell line expressing only EGFP cDNA, weak reticular and punctate fluorescence was distributed throughout the EGFP-PPwild cell line. Bafilomycin A1, a potent inhibitor of vacuolar ATPase and intracellular acidification, induced the distribution of Golgi-like perinuclear fluorescence throughout the living and fixed cells, in which only the 81 kDa product was detected. After removal of the agent, time-dependent transport of the chimaeric protein from the Golgi apparatus to the prelysosomal structure in living cells was monitored with a confocal laser scanning microscope system. Leupeptin caused the distribution of lysosome-like granular fluorescence throughout the cytoplasm in the fixed cells, although it was hardly observed in living cells. The latter agent also dose-dependently induced an increase in the intracellular amount of the 81 kDa product containing the EGFP domain and inhibited the restoration of cathepsin A activity in the EGFP-PPwild cells after the removal of bafilomycin A1. In parallel, both the mature two-chain form and PPCA function disappeared. These results suggested that the chimaera gene product was transported to acidic compartments (endosomes/lysosomes), where proteolytic processing of the PPCA precursor/zymogen, quenching of the fluorescence, and random degradation of the EGFP portion occurred. A cell line stably expressing a chimaeric gene with a mutant PPCA cDNA containing an A1184-->G (Y395C) mutation, commonly detected in Japanese severe early-infantile type of galactosialidosis patients, showed an endoplasmic reticulum (ER)-like reticular fluorescence pattern. The PPCA-immunoreactive gene product was hardly detected in this cell line. The mutant chimaeric product was suggested to be degraded rapidly in the ER before transport to post-ER compartments. A cell line expressing the chimaeric gene with a T746-->A (Y249N) PPCA mutation exhibited both ER-like reticular and granular fluorescence on the reticular structure that was stronger than that in the EGFP-PPwild cells. Some of them contained large fluorescent inclusion-body-like structures. The ineffectiveness of transport inhibitors in the distribution changes in the two mutant chimaeric proteins suggested that they were not delivered to acidic compartments. Therefore this expression system can possibly be applied to the direct analysis of the sorting defects of mutant gene products in living cells and will be useful for the molecular investigation of lysosomal diseases, including galactosialidosis.  (+info)

Functional properties of leptin receptor isoforms: internalization and degradation of leptin and ligand-induced receptor downregulation. (63/6965)

Long (ObRb) and short (ObRa) leptin receptor isoforms are thought to play essential roles in mediating leptin signaling and the transport and degradation of leptin, respectively. Although the capacity of these cloned receptor species to mediate signal transduction has been reported, there is no information on the ability of individual receptor species to mediate leptin internalization and degradation or to undergo ligand-induced downregulation. We therefore studied these parameters in Chinese hamster ovary (CHO) cells stably expressing either ObRa or ObRb isoforms of the leptin receptor. We determined that both ObRa and ObRb mediated internalization of 125I-labeled leptin by a temperature- and coated pit-dependent mechanism. Both ObRa and ObRb also mediated degradation of 125I-leptin by a lysosomal mechanism, and this was more efficiently mediated by ObRa in these cells. Neither leptin internalization nor degradation by ObRa was affected by mutation of the conserved Box 1 motif. By studying deletion mutants of ObRa, we found that efficient internalization was dependent on a motif located between amino acids 8 and 29 of the intracellular domain of ObRa. Exposure of cells expressing ObRa or ObRb to unlabeled leptin for 90 min at 37 degrees C produced downregulation of available surface receptors, and this effect was of greater magnitude in cells expressing ObRb. Whereas CHO cells expressing the growth hormone receptor showed marked downregulation of ligand binding after exposure to dexamethasone (DEX) or phorbol myristic acid (PMA), PMA had no effect on expression of ObRa or ObRb, and DEX reduced binding to cells expressing ObRb by 15%. Thus, the two leptin receptor isoforms, ObRa and ObRb, mediate leptin internalization by a coated pit-dependent mechanism, leptin degradation by a lysosomal pathway, and ligand-induced receptor downregulation. The differential capacity of the two receptor isoforms may relate to the different roles of the receptor isoforms in the biology of leptin.  (+info)

Structure of the human gene for lysosomal di-N-acetylchitobiase. (64/6965)

Chitobiase is a lysosomal glycosidase that acts during the ordered degradation of asparagine-linked glycoproteins to cleave the core chitobiose unit at its reducing end. Human chitobiase is expressed in significant amounts, while bovine chitobiase is produced at extremely low levels. To begin to understand this species-dependent expression, we determined the gene structure of human chitobiase. The human chitobiase gene ( CTB S) is approximately 20 kb comprising seven exons varying from 0.1 to 2.3 kb and six introns of 0.3 to 8 kb. The previously characterized partial bovine chitobiase gene structure is similarly organized including exon and intron sizes and locations, but the human and bovine 5'-flanking regions differ significantly. 5'-RACE analysis of human chitobiase cDNA revealed only one transcriptional start site 45 bp upstream of the ATG translation initiation site. Computer analysis of the human chitobiase gene 5'-flanking region shows characteristics of a typical housekeeping gene. The putative promoter region contains a distal TATA box, and there are several Sp-1 and AP-2 cis elements. In contrast, bovine chitobiase gene 5'-flanking region shows totally different structures and may contain several silencers. A partial art-2 segment which is an artiodactyl Alu -like repetitive sequence, is also present. These evolutionary differences in the 5'-flanking region of the chitobiase genes from human and bovine could account for the widely varied expression levels of the hydrolase within these two species.  (+info)