Lysosome membrane lipid microdomains: novel regulators of chaperone-mediated autophagy. (17/108)

Chaperone-mediated autophagy (CMA) is a selective mechanism for the degradation of soluble cytosolic proteins in lysosomes. The limiting step of this type of autophagy is the binding of substrates to the lysosome-associated membrane protein type 2A (LAMP-2A). In this work, we identify a dynamic subcompartmentalization of LAMP-2A in the lysosomal membrane, which underlies the molecular basis for the regulation of LAMP-2A function in CMA. A percentage of LAMP-2A localizes in discrete lysosomal membrane regions during resting conditions, but it exits these regions during CMA activation. Disruption of these regions by cholesterol-depleting agents or expression of a mutant LAMP-2A excluded from these regions enhances CMA activity, whereas loading of lysosomes with cholesterol significantly reduces CMA. Organization of LAMP-2A into multimeric complexes, required for translocation of substrates into lysosomes via CMA, only occurs outside the lipid-enriched membrane microdomains, whereas the LAMP-2A located within these regions is susceptible to proteolytic cleavage and degradation. Our results support that changes in the dynamic distribution of LAMP-2A into and out of discrete microdomains of the lysosomal membrane contribute to regulate CMA.  (+info)

Up-regulation of cation-independent mannose 6-phosphate receptor and endosomal-lysosomal markers in surviving neurons after 192-IgG-saporin administrations into the adult rat brain. (18/108)

The cation-independent mannose 6-phosphate receptor (CI-MPR) is a single transmembrane domain glycoprotein that plays a major role in the trafficking of lysosomal enzymes from the trans-Golgi network to the endosomal-lysosomal (EL) system. Because dysfunction of EL system is associated with a variety of neurodegenerative disorders, it is possible that the CI-MPR may have a role in regulating neuronal viability after toxicity/injury. In the present study, we report that 192-IgG-saporin-induced loss of basal forebrain cholinergic neurons causes a transient up-regulation of CI-MPR protein levels in surviving neurons of the basal forebrain and frontal cortex but not in the brainstem region, which was relatively spared by the immunotoxin. This was accompanied by a parallel time-dependent increase in other EL markers, ie, cathepsin D, Rab5, and LAMP2 in the basal forebrain region, whereas in the frontal cortex the levels of cathepsin D, and to some extent Rab5, were increased. Given the critical role of the EL system in the clearance of abnormal proteins in response to changing conditions, it is likely that the observed increase in the CI-MPR and components of the EL system in surviving neurons after 192-IgG-saporin treatment represents an adaptive mechanism to restore the metabolic/structural abnormalities induced by the loss of cholin-ergic neurons.  (+info)

Functional comparison of T cells recognizing cytomegalovirus pp65 and intermediate-early antigen polypeptides in hematopoietic stem-cell transplant and solid organ transplant recipients. (19/108)

The functional status of cytotoxic T lymphocyte (CTL) populations recognizing cytomegalovirus intermediate-early antigen (IE1) and pp65 polypeptides was investigated in peripheral blood mononuclear cells from hematopoietic stem-cell transplant (HSCT) and solid organ transplant recipients. Combined flow-based CD107a/b degranulation/mobilization and intracellular cytokine (ICC) assays using peptide libraries as antigens indicated that a significantly higher proportion of pp65-specific CTLs were in a more mature functional state, compared with IE1-specific CTLs. Degranulation/multiple cytokine ICC assays also indicated that a significantly higher proportion of pp65-specific than IE1-specific CTLs secreted both interferon- gamma and tumor necrosis factor- alpha and possessed greater cytotoxic potential. These results support our earlier findings of functional differences between CTLs recognizing individual epitopes within the IE1 and pp65 antigens in healthy donors and HSCT recipients and extend them to a broader array of human leukocyte antigen-restricted responses to those antigens. We also provide evidence of a relationship between cytotoxic function and the ability of cytomegalovirus-specific CTLs to secrete multiple cytokines.  (+info)

Cathepsin E deficiency induces a novel form of lysosomal storage disorder showing the accumulation of lysosomal membrane sialoglycoproteins and the elevation of lysosomal pH in macrophages. (20/108)

Cathepsin E, an endolysosomal aspartic proteinase predominantly expressed in cells of the immune system, has an important role in immune responses. However, little is known about the precise roles of cathepsin E in this system. Here we report that cathepsin E deficiency (CatE(-/-)) leads to a novel form of lysosome storage disorder in macrophages, exhibiting the accumulation of the two major lysosomal membrane sialoglycoproteins LAMP-1 and LAMP-2 and the elevation of lysosomal pH. These striking features were also found in wild-type macrophages treated with pepstatin A and Ascaris inhibitor. Whereas there were no obvious differences in their expression, biosynthesis, and trafficking between wild-type and CatE(-/-) macrophages, the degradation rates of these two membrane proteins were apparently decreased as a result of cathepsin E deficiency. Because there was no difference in the vacuolar-type H(+)-ATPase activity in both cell types, the elevated lysosomal pH in CatE(-/-) macrophages is most likely due to the accumulation of these lysosomal membrane glycoproteins highly modified with acidic monosaccharides, thereby leading to the disruption of non-proton factors controlling lysosomal pH. Furthermore, the selective degradation of LAMP-1 and LAMP-2, as well as LIMP-2, was also observed by treatment of the lysosomal membrane fraction isolated from wild-type macrophages with purified cathepsin E at pH 5. Our results thus suggest that cathepsin E is important for preventing the accumulation of these lysosomal membrane sialoglycoproteins that can induce a new form of lysosomal storage disorder.  (+info)

Lysosomal accumulation of SCMAS (subunit c of mitochondrial ATP synthase) in neurons of the mouse model of mucopolysaccharidosis III B. (21/108)

The neurodegenerative disease MPS III B (Sanfilippo syndrome type B) is caused by mutations in the gene encoding the lysosomal enzyme alpha-N-acetylglucosaminidase, with a resulting block in heparan sulfate degradation. A mouse model with disruption of the Naglu gene allows detailed study of brain pathology. In contrast to somatic cells, which accumulate primarily heparan sulfate, neurons accumulate a number of apparently unrelated metabolites, including subunit c of mitochondrial ATP synthase (SCMAS). SCMAS accumulated from 1 month of age, primarily in the medial entorhinal cortex and layer V of the somatosensory cortex. Its accumulation was not due to the absence of specific proteases. Light microscopy of brain sections of 6-months-old mice showed SCMAS to accumulate in the same areas as glycosaminoglycan and unesterified cholesterol, in the same cells as ubiquitin and GM3 ganglioside, and in the same organelles as Lamp 1 and Lamp 2. Cryo-immuno electron microscopy showed SCMAS to be present in Lamp positive vesicles bounded by a single membrane (lysosomes), in fingerprint-like layered arrays. GM3 ganglioside was found in the same lysosomes, but was not associated with the SCMAS arrays. GM3 ganglioside was also seen in lysosomes of microglia, suggesting phagocytosis of neuronal membranes. Samples used for cryo-EM and further processed by standard EM procedures (osmium tetroxide fixation and plastic embedding) showed the disappearance of the SCMAS fingerprint arrays and appearance in the same location of "zebra bodies", well known but little understood inclusions in the brain of patients with mucopolysaccharidoses.  (+info)

Induction of primary anti-HIV CD4 and CD8 T cell responses by dendritic cells transduced with self-inactivating lentiviral vectors. (22/108)

In this study, we demonstrate that a minimal self-inactivating (SIN) lentiviral vector (LV) that does not encode any human immunodeficiency virus (HIV) genes is able to induce HIV-specific CD4 and CD8 T cell responses after transduction of dendritic cells (DCs). The LV-DC-primed T cells displayed HIV-specific lytic degranulation, as illustrated by acquisition of CD107a/b expression on the cell surface and up-regulation of active caspase 3. HIV-specific cytotoxic T lymphocyte (CTL) response was consistently detected using different assays, and T cell receptors specific to three prominent HIV epitopes, SL9 (Gag peptide: SLYNTVATL), IV9 (Pol peptide: ILKEPVHGV), and MA10 (In peptide: MASDFNLPPV) were detected using HLA-A0201 peptide-tetramers. These results demonstrate that DCs transduced with the minimal SIN-LV can efficiently induce HIV-specific CD4 and CD8 T cell responses. Since LVs are popular gene transfer tools, our results have fundamental implications for future LV applications and DC vaccine development.  (+info)

LAMP proteins are required for fusion of lysosomes with phagosomes. (23/108)

Lysosome-associated membrane proteins 1 and 2 (LAMP-1 and LAMP-2) are delivered to phagosomes during the maturation process. We used cells from LAMP-deficient mice to analyze the role of these proteins in phagosome maturation. Macrophages from LAMP-1- or LAMP-2-deficient mice displayed normal fusion of lysosomes with phagosomes. Because ablation of both the lamp-1 and lamp-2 genes yields an embryonic-lethal phenotype, we were unable to study macrophages from double knockouts. Instead, we reconstituted phagocytosis in murine embryonic fibroblasts (MEFs) by transfection of FcgammaIIA receptors. Phagosomes formed by FcgammaIIA-transfected MEFs obtained from LAMP-1- or LAMP-2- deficient mice acquired lysosomal markers. Remarkably, although FcgammaIIA-transfected MEFs from double-deficient mice ingested particles normally, phagosomal maturation was arrested. LAMP-1 and LAMP-2 double-deficient phagosomes acquired Rab5 and accumulated phosphatidylinositol 3-phosphate, but failed to recruit Rab7 and did not fuse with lysosomes. We attribute the deficiency to impaired organellar motility along microtubules. Time-lapse cinematography revealed that late endosomes/lysosomes as well as phagosomes lacking LAMP-1 and LAMP-2 had reduced ability to move toward the microtubule-organizing center, likely precluding their interaction with each other.  (+info)

Altered dynamics of the lysosomal receptor for chaperone-mediated autophagy with age. (24/108)

Rates of autophagy, the mechanism responsible for lysosomal clearance of cellular components, decrease with age. We have previously described an age-related decline in chaperone-mediated autophagy (CMA), a selective form of autophagy, by which particular cytosolic proteins are delivered to lysosomes after binding to the lysosome-associated membrane protein type 2A (LAMP-2A), a receptor for this pathway. Rates of CMA decrease with age because of a decrease in the levels of LAMP-2A. In this work we have investigated the reasons for the reduced levels of LAMP-2A with age. While transcriptional rates of LAMP-2A remain unchanged with age, the dynamics and stability of the receptor in the lysosomal compartment are altered. The mobilization of the lysosomal lumenal LAMP-2A to the membrane when CMA is activated is altered in lysosomes from old animals, leading to the presence of an unstable pool of lumenal LAMP-2A. By contrast, the regulated cleavage of LAMP-2A at the lysosomal membrane is reduced owing to altered association of the receptor and the protease responsible for its cleavage to particular membrane microdomain regions. We conclude that age-related changes at the lysosomal membrane are responsible for the altered turnover of the CMA receptor in old organisms and the consequent decline in this pathway.  (+info)