A monoclonal antibody reactive with a 40-kDa molecule on fetal thymocytes and tumor cells blocks proliferation and stimulates aggregation and apoptosis. (25/1303)

E710.2.3 is a murine thymic lymphoma cell line with an immature phenotype (CD4-CD8-) that proliferates in response to thymocytes or PMA when cultured at low density and proliferates spontaneously when grown at high density. To identify functional molecules on this cell line, we screened for mAbs that could block its proliferation. A hamster mAb, DMF10.62.3, inhibited the spontaneous, thymocyte-induced, and PMA-stimulated proliferation of E710.2.3 in vitro and induced these cells to undergo apoptosis. The mAb also caused homotypic aggregation of E710.2.3, which was inhibited by cytochalasin B, trifluoperazine, a combination of sodium azide and 2-deoxyglucose, EDTA, incubation at 4 degrees C, or treatment with paraformaldehyde. The DMF10 62.3 mAb stained a number of immortalized murine and human cell lines and, where tested, blocked their proliferation and caused death to varying extents by apoptosis. The molecule recognized by the mAb DMF10.62.3 was expressed on day 14 fetal thymus Thy1.2-positive cells. However, it was not detected on adult murine thymocytes, splenocytes, or bone marrow cells or on splenic LPS-activated B cells or Con A-activated T cells. The Ab immunoprecipitated a 40-kDa molecule from E710.2.3 that was not glycosylphosphatidylinositol linked. The data suggest that the molecule recognized by DMF62.3 is a novel cell surface molecule that may be involved in cell proliferation and/or cell death.  (+info)

Expression of the death gene Bik/Nbk promotes sensitivity to drug-induced apoptosis in corticosteroid-resistant T-cell lymphoma and prevents tumor growth in severe combined immunodeficient mice. (26/1303)

Members of the Bcl-2 gene family have been implicated in the regulation of cell death induced by cytostatic drugs. In some malignancies such as B-cell lymphoma, there is evidence that high expression of Bcl-2 is an independent negative prognostic marker and the overexpression of Bcl-2 has been shown to confer resistance to cytotoxic drugs by preventing drug-induced apoptosis. This function of Bcl-2 can be antagonized by apoptosis-promoting members of the Bcl-2 family. We previously showed that overexpression of Bax restores the chemosensitivity of Bax-deficient breast cancer cell lines. Therefore, we investigated whether the death-promoting Bcl-2 homologue Bik/Nbk can enhance cytostatic drug-induced apoptosis. As a model, we used the T-cell leukemia H9 (CD3(+) and CD4(+)CD8(-)), which is resistant to corticosteroid-induced cell death and does not express endogenous Bik/Nbk. Sensitivity for drug-induced apoptosis was increased 10- to 39-fold in cells transfected with the full-length coding sequence of Bik/Nbk. In addition, apoptosis induced via CD95/Fas or heat shock was increased to a similar extent. These data show that Bik/Nbk, which, unlike Bax, carries only a BH3 but no BH1 or BH2 domain may be a target to enhance chemosensitivity. The complete suppression of tumor growth in a severe combined immunodeficient mouse xenotransplant model suggests that, in analogy to Bax, Bik/Nbk may function as a tumor suppressor gene.  (+info)

m144, a murine cytomegalovirus (MCMV)-encoded major histocompatibility complex class I homologue, confers tumor resistance to natural killer cell-mediated rejection. (27/1303)

Until now, it has been unclear whether murine cytomegalovirus (MCMV)-encoded protein m144 directly regulates natural killer (NK) cell effector function and whether the effects of m144 are only strictly evident in the context of MCMV infection. We have generated clones of the transporter associated with antigen processing (TAP)-2-deficient RMA-S T lymphoma cell line and its parent cell line, RMA, that stably express significant and equivalent levels of m144. In vivo NK cell-mediated rejection of RMA-S-m144 lymphomas was reduced compared with rejection of parental or mock-transfected RMA-S clones, indicating the ability of m144 to regulate NK cell-mediated responses in vivo. Significantly, the accumulation of NK cells in the peritoneum was reduced in mice challenged with RMA-S-m144, as was the lytic activity of NK cells recovered from the peritoneum. Expression of m144 on RMA-S cells also conferred resistance to cytotoxicity mediated in vitro by interleukin 2-activated adherent spleen NK cells. In summary, the data demonstrate that m144 confers some protection from NK cell effector function mediated in the absence of target cell class I expression, but that in vivo the major effect of m144 is to regulate NK cell accumulation and activation at the site of immune challenge.  (+info)

Allelic loss mapping and physical delineation of a region harboring a putative thymic lymphoma suppressor gene on mouse chromosome 12. (28/1303)

Our previous allelic loss analysis of gamma-ray induced thymic lymphomas in F1 hybrid and backcross mice between BALB/c and MSM strains mapped the Tlsr4 region exhibiting a high frequency of allelic loss (62%) to a 2.9 cM interval between the markers D12Mit53 and D12Mit279 on mouse chromosome 12. To narrow further the interval harboring a putative tumor suppressor gene, a high-density scan has been carried out for informative 361 thymic lymphomas. Construction of a physical map of Tlsr4 with 3 YAC and 15 BAC clones and isolation of YAC- and BAC-derived polymorphic probes lead to fine allelic loss mapping. Three successive polymorphic sites within one BAC exhibit the retention of both alleles in seven, one and four lymphomas, suggesting that a common region of allelic loss for Tlsr4 exists within the BAC region. Pulsed-field gel electrophoresis of NotI digests of this and other clones determines that the commonly lost region is a 35 kb interval with a NotI site. NotI sites are frequently associated with coding regions, and our preliminary sequencing has identified ESTs in the region. Thus, the present study facilitates the identification of genes in the Tlsr4 region that would lead to isolation of a novel tumor suppressor gene.  (+info)

Loss of heterozygosity at the proximal-mid part of mouse chromosome 4 defines two novel tumor suppressor gene loci in T-cell lymphomas. (29/1303)

Recent studies in our laboratory reported frequent loss of heterozygosity (LOH) on mouse chromosome 4 in T-cell lymphomas, identifying three candidate tumor suppressor regions (TLSR1-3). To determine the possible existence of other tumor suppressor gene loci on the proximal-mid part of chromosome 4 and to clarify whether the p16(INK4a) (alpha and beta) and p15(INK4b) genes are the inactivation targets of deletion at TLSR1, we have tested 73 gamma-radiation-induced T-cell lymphomas of F1 hybrid mice by LOH analysis. Frequent LOH was found at the INK4a and INK4b loci and the surrounding markers D4Mit77, D4Mit245 and D4Wsm1. In addition, we identified two distinct regions of significant allelic losses in the proximal-mid part of chromosome 4, defined by the markers D4Mit116 (TLSR4) and D4Mit21 (TLSR5). Taken together, this evidence and our previous data indicate the existence of at least five different candidate sites for tumor suppressor genes on chromosome 4, thus revealing a main role for this chromosome in the development of mouse T-cell lymphomas.  (+info)

Murine leukemia provirus-mediated activation of the Notch1 gene leads to induction of HES-1 in a mouse T lymphoma cell line, DL-3. (30/1303)

Constitutive activation of Notch signaling is known to be associated with tumorigenesis. In a mouse T lymphoma cell line, DL-3, we found that a murine leukemia provirus was inserted in the Notch1 locus, which led to marked expression of a virus-Notch1 fusion mRNA encoding an intracellular portion of the Notch1 protein. Furthermore, expression and nuclear localization of this constitutively active form of Notch1 protein were confirmed. Corresponding to this finding, the transcription of the hairy/enhancer of split (HES-1) gene, a known target of Notch1 signaling, was elevated in this cell line. A potential role for overexpressed HES-1 in the development of the lymphoma was discussed.  (+info)

Tandemization of a subregion of the enhancer sequences from SRS 19-6 murine leukemia virus associated with T-lymphoid but not other leukemias. (31/1303)

Most simple retroviruses induce tumors of a single cell type when infected into susceptible hosts. The SRS 19-6 murine leukemia virus (MuLV), which originated in mainland China, induces leukemias of multiple cellular origins. Indeed, infected mice often harbor more than one tumor type. Since the enhancers of many MuLVs are major determinants of tumor specificity, we tested the role of the SRS 19-6 MuLV enhancers in its broad disease specificity. The enhancer elements of the Moloney MuLV (M-MuLV) were replaced by the 170-bp enhancers of SRS 19-6 MuLV, yielding the recombinants DeltaMo+SRS(+) and DeltaMo+SRS(-) M-MuLV. M-MuLV normally induces T-lymphoid tumors in all infected mice. Surprisingly, when neonatal mice were inoculated with DeltaMo+SRS(+) or DeltaMo+SRS(-) M-MuLV, all tumors were of T-lymphoid origin, typical of M-MuLV rather than SRS 19-6 MuLV. Thus, the SRS 19-6 MuLV enhancers did not confer the broad disease specificity of SRS 19-6 MuLV to M-MuLV. However, all tumors contained DeltaMo+SRS M-MuLV proviruses with common enhancer alterations. These alterations consisted of tandem multimerization of a subregion of the SRS 19-6 enhancers, encompassing the conserved LVb and core sites and adjacent sequences. Moreover, when tumors induced by the parental SRS 19-6 MuLV were analyzed, most of the T-lymphoid tumors had similar enhancer alterations in the same region whereas tumors of other lineages retained the parental SRS 19-6 MuLV enhancers. These results emphasize the importance of a subregion of the SRS 19-6 MuLV enhancer in induction of T-cell lymphoma. The relevant sequences were consistent with crucial sequences for T-cell lymphomagenesis identified for other MuLVs such as M-MuLV and SL3-3 MuLV. These results also suggest that other regions of the SRS 19-6 MuLV genome contribute to its broad leukemogenic spectrum.  (+info)

Selection of reversions and suppressors of a mutation in the CBF binding site of a lymphomagenic retrovirus. (32/1303)

The retrovirus SL3 induces T-cell lymphomas in mice. The transcriptional enhancer in the long terminal repeat (LTR) of SL3 contains two 72-bp repeats. Each repeat contains a binding site for the transcription factor CBF (also called AML1). The CBF binding sites are called core elements. SAA is a mutant that is identical to SL3 except for the presence of a single-base-pair substitution in each of the two core elements. This mutation significantly attenuates viral lymphomagenicity. Most lymphomas that occur in SAA-infected mice contain proviruses with reversions or second-site suppressor mutations within the core element. We examined the selective pressures that might account for the predominance of the reversions and suppressor mutations in tumor proviruses by analyzing when proviruses with altered core sequences became abundant during the course of lymphomagenesis. Altered core sequences were easily detected in thymus DNAs by 4 to 6 weeks after SAA infection of mice, well before lymphomas were grossly evident. This result is consistent with the hypothesis that viruses with the core sequence alterations emerged because they replicated more effectively in mice than SAA. The number of 72-bp tandem, repeats in the viral LTR was found to vary, presumably as a consequence of reverse transcriptase slippage during polymerization. Proviruses with two repeats predominated in the thymuses of SAA- and SL3-infected mice before lymphomas developed, although LTRs with one or three repeats were also present. This suggested that two was the optimal number of 72-bp repeats for viral replication. However, in lymphomas, proviruses with three or four repeats usually predominated. This suggested that a late step in the process of lymphomagenesis led to the abundance of proviruses with additional repeats. We hypothesize that proviruses with additional 72-bp repeats endowed the cells containing them with a selective growth advantage.  (+info)