(1/1930) Clinical significance of decreased zeta chain expression in peripheral blood lymphocytes of patients with head and neck cancer.

Patients with squamous cell carcinoma of the head and neck (SCCHN) frequently have impaired immune responses. Alterations in T-cell receptor-associated signaling molecules in tumor-infiltrating as well as circulating lymphocytes have been reported in these patients. Using quantitative flow cytometry analysis, we have demonstrated that expression of the zeta chain is significantly decreased relative to normal controls in both CD8+ and CD4+ T cells as well as CD3- CD56+ CD16+ natural killer cells in the peripheral blood of patients with SCCHN who, as a result of previous therapies, have no evident disease. Patients with a more aggressive type of SCCHN and those who experienced a recurrence or had a second primary cancer within the last 2 years of the study had the lowest zeta chain expression. In addition, SCCHN patients showed a significantly greater spontaneous ex vivo apoptosis, as measured by a terminal deoxynucleotide transferase-mediated dUTP nick end labeling assay, in PBMCs, compared to normal controls. The observed decreased expression of zeta in T and natural killer cells coincided but did not directly correlate with significantly increased spontaneous apoptosis of lymphocytes obtained from treated patients with no evident disease. The results suggest that in patients with SCCHN, zeta chain defects and lymphocyte apoptosis are manifestations of long-lasting negative effects of tumor on the immune system.  (+info)

(2/1930) Presentation of renal tumor antigens by human dendritic cells activates tumor-infiltrating lymphocytes against autologous tumor: implications for live kidney cancer vaccines.

The clinical impact of dendritic cells (DCs) in the treatment of human cancer depends on their unique role as the most potent antigen-presenting cells that are capable of priming an antitumor T-cell response. Here, we demonstrate that functional DCs can be generated from peripheral blood of patients with metastatic renal cell carcinoma (RCC) by culture of monocytes/macrophages (CD14+) in autologous serum containing medium (RPMI) in the presence of granulocyte macrophage colony-stimulating factor and interleukin (IL) 4. For testing the capability of RCC-antigen uptake and processing, we loaded these DCs with autologous tumor lysate (TuLy) using liposomes, after which cytometric analysis of the DCs revealed a markedly increased expression of HLA class I antigen and a persistent high expression of class II. The immunogenicity of DC-TuLy was further tested in cultures of renal tumor infiltrating lymphocytes (TILs) cultured in low-dose IL-2 (20 Biologic Response Modifier Program units/ml). A synergistic effect of DC-TuLy and IL-2 in stimulating a T cell-dependent immune response was demonstrated by: (a) the increase of growth expansion of TILs (9.4-14.3-fold; day 21); (b) the up-regulation of the CD3+ CD56- TcR+ (both CD4+ and CD8+) cell population; (c) the augmentation of T cell-restricted autologous tumor lysis; and (d) the enhancement of IFN-gamma, tumor necrosis factor-alpha, granulocyte macrophage colony-stimulating factor, and IL-6 mRNA expression by TILs. Taken together, these data implicate that DC-TuLy can activate immunosuppressed TIL via an induction of enhanced antitumor CTL responses associated with production of Thl cells. This indicates a potential role of DC-TuLy vaccines for induction of active immunity in patients with advanced RCC.  (+info)

(3/1930) NKp44, a triggering receptor involved in tumor cell lysis by activated human natural killer cells, is a novel member of the immunoglobulin superfamily.

Surface receptors involved in natural killer (NK) cell triggering during the process of tumor cell lysis have recently been identified. Of these receptors, NKp44 is selectively expressed by IL-2- activated NK cells and may contribute to the increased efficiency of activated NK cells to mediate tumor cell lysis. Here we describe the molecular cloning of NKp44. Analysis of the cloned cDNA indicated that NKp44 is a novel transmembrane glycoprotein belonging to the Immunoglobulin superfamily characterized by a single extracellular V-type domain. The charged amino acid lysine in the transmembrane region may be involved in the association of NKp44 with the signal transducing molecule killer activating receptor-associated polypeptide (KARAP)/DAP12. These molecules were found to be crucial for the surface expression of NKp44. In agreement with data of NKp44 surface expression, the NKp44 transcripts were strictly confined to activated NK cells and to a minor subset of TCR-gamma/delta+ T lymphocytes. Unlike genes coding for other receptors involved in NK cell triggering or inhibition, the NKp44 gene is on human chromosome 6.  (+info)

(4/1930) Secretion of beta-chemokines by bronchoalveolar lavage cells during primary infection of macaques inoculated with attenuated nef-deleted or pathogenic simian immunodeficiency virus strain mac251.

Primary infection of macaques with simian immunodeficiency virus (SIV) as a model of human immunodeficiency virus (HIV) infection represents a unique opportunity to investigate early lentivirus-host interactions. In order to gain insight into immunopathogenic events taking place in the lung during lentiviral infection, we analysed lymphocyte expansion in the lung and chemokine secretion by mononuclear cells obtained by bronchoalveolar lavage (BALMCs) during primary infection by a pathogenic and a non-pathogenic SIV. Two groups of cynomolgus macaques were inoculated intravenously with a fully pathogenic isolate of SIVmac251 or with an attenuated, nef-deleted, molecular clone of SIVmac251. Spontaneous MIP-1alpha, MIP-1beta and RANTES production was assessed by ELISA in supernatants of short-term cultured BALMCs. Kinetics of haematological, virological and immunological parameters were investigated simultaneously. All 11 inoculated animals became infected. Monkeys inoculated with the nef-deleted SIV clone exhibited a significantly reduced plasma virus load and a less pronounced accumulation of lymphocytes in the lung compared to monkeys infected with the pathogenic SIVmac251 isolate. Compared to pre-infection levels, we observed an increase in the levels of RANTES, MIP1-alpha and MIP1-beta production in the two groups of monkeys, by the time of peak viraemia. Strikingly, a greater enhancement of RANTES and MIP-1alpha production was detected in monkeys infected with the attenuated virus. Given the potential influence of beta-chemokines on the immune response and virus replication, such results suggest that RANTES, MIP1-alpha and MIP1-beta could contribute to the singular features of the immune response elicited during infection of macaques with an attenuated SIV.  (+info)

(5/1930) Kinetics of the changes of lymphocyte subsets defined by cytokine production at single cell level during highly active antiretroviral therapy for HIV-1 infection.

The effects of highly active antiretroviral therapy on cytokine imbalances associated with HIV-1 infection have not been characterized. Using single cell analysis by flow cytometry, we show that a significant recovery in the frequency of IL-2-producing cells was only observed in patients with a sustained control of viral replication and that the overexpanded CD8 T cell population of CD28- IFN-gamma + cells was not significantly reduced after 1 yr of effective therapy. Moreover, a detrimental role of IL-4 is suggested by the association between an enhanced proportion of IL-4-producing cells within the CD4 and particularly the CD8 subset and viral load rebound. Finally, the kinetics of changes of cell subsets assessed for simultaneous production of different cytokines supports the view that cell reconstitution during highly active antiretroviral therapy is initially due to redistribution of terminally differentiated cells, followed by peripheral expansion of less differentiated ones and a late progressive increase of the proportion of functionally defined naive/memory precursor lymphocytes. These data bring new support for the role of cytokine imbalances in AIDS pathogenesis and may be relevant for the definition of immunointervention targets.  (+info)

(6/1930) Induction of specific CD8+ T-lymphocyte responses using a human papillomavirus-16 E6/E7 fusion protein and autologous dendritic cells.

When intracellular viral proteins are degraded, only a limited number of peptide epitopes are capable of eliciting specific CD8+ cellular immune responses for a given human leukocyte antigen (HLA) haplotype. We sought to induce CD8+ T-lymphocyte (CTL) responses to human papillomavirus-16 (HPV-16) E6 and E7 proteins using a recombinant E6/E7 fusion protein and autologous human dendritic cells (DCs). CTLs were generated by in vitro stimulation using a recombinant HPV-16 E6/E7 fusion protein and autologous DCs from a healthy HLA-A*0201 donor. CTL specificity was assessed by cytokine release assays when the cells were reacted with autologous DC targets coincubated with the E6/E7 fusion protein. These CTLs were also reacted with the immunodominant E7 peptides (E711-20 and E7(86-93)) and DCs as a target. As a negative control, DCs were incubated with or without an irrelevant control protein (Helicobacter pylori) as target for the E6/E7-induced CTLs. The E6/E7-induced CTLs were capable of specific recognition of target DCs coincubated with E6/E7 but not the control protein. When E6/E7-specific CTLs were reacted with DCs and either E7(11-20) or E7(86-93), specific peptide recognition was also detected. These data demonstrate that specific CTLs can be elicited using autologous human DCs and a HPV-16 E6/E7 fusion protein. Therefore, extracellular viral proteins seem to be engulfed and processed by DCs; then the immunodominant HLA-A2-restricted peptides become available for CD8+ T-lymphocyte recognition. These data suggest that vaccine strategies using recombinant viral proteins may overcome the limitation of peptide epitopes for specific HLA haplotypes and may, therefore, permit more generalized clinical application.  (+info)

(7/1930) Stimulation of CD40 on immunogenic human malignant melanomas augments their cytotoxic T lymphocyte-mediated lysis and induces apoptosis.

Here, we report the functional expression of CD40 on human malignant melanomas (MMs). Comparison of tumor specimen from MM precursor lesions, primary tumors, and metastases revealed that CD40 surface expression is down-regulated during tumor progression. CD40 expression was confirmed in 7 human MM cell lines established from immunogenic primary tumors or metastases, whereas 11 cell lines established from advanced stages were CD40 negative. CD40 expression could be enhanced in CD40-positive MM by stimulation with IFN-gamma and tumor necrosis factor-alpha but not by interleukin (IL)-1beta or CD40 triggering. CD40 ligation on MM by CD40L-transfected murine L-cells or by a soluble CD40L fusion protein up-regulated their expression of intercellular adhesion molecule-1 and MHC class I and class II molecules and their secretion of IL-6, IL-8, tumor necrosis factor-a, and granulocyte macrophage colony-stimulating factor and also induced a rapid activation of the transcription factor nuclear factor kappaB. Furthermore, CD40 ligation of a HLA-A2+, MelanA/MART1+ MM cell line enhanced its susceptibility to specific lysis by a HLA-A2-restricted, MelanA/MART-1-specific CTL clone. Finally, CD40 ligation induced growth inhibition and apoptosis in MM. These results indicate that CD40-CD40L interactions may play an important role in augmenting antitumor immunity and inducing apoptosis in some CD40-positive immunogenic human MMs.  (+info)

(8/1930) Protective effects of 5,6,7,8-tetrahydroneopterin against X-ray radiation injury in mice.

The protective effects of 5,6,7,8-tetrahydroneopterin (NH4) against radiation injury in mice were studied. (C57BL/6xA/J)F1 (B6A) mice received a single whole-body irradiation dose of 200, 400, 700 or 800 cGy of X-rays. NH4 (30 mg/kg body weight) or phosphate-buffered saline (PBS) was injected intraperitoneally into irradiated mice 10 min before and after the irradiation and again after 6 h. All mice which received the 800 cGy radiation+PBS died between 8 and 11 days after the treatment. In contrast, those which also received NH4 demonstrated a significantly prolonged survival time and 40% lived more than 5 months. Total numbers of thymocytes and spleen cells on day 5 post-irradiation were dramatically reduced in line with the radiation dose. The survival was significantly enhanced by NH4 in treated mice. The proliferation of spleen cells in mice stimulated by concanavalin A (Con A) or lipopolysaccharide (LPS) was also greater in NH4 treated mice. The immune response of survivors 5 months after 800 cGy+NH4 treatments, against Con A, LPS, allogenic mouse, and sheep red blood cells had essentially recovered to the levels of normal mice. These results indicate that NH4 had an important role in modifying radiation injury.  (+info)