Counterflow centrifugation allows addition of appropriate numbers of T cells to allogeneic marrow and blood stem cell grafts to prevent severe GVHD without substantial loss of mature and immature progenitor cells. (49/3240)

Using counterflow centrifugation elutriation (CCE) lymphocytes can be separated from CD34+ populations based on size. Immature progenitors tend to be smaller than mature cells suggesting that CCE introduces loss of stem cells. We compared the separation of 12 PBSC with 16 BM transplants. Cells were separated in 12 fractions (3000-2200 r.p.m.) and the rotor off (RO) fraction. Separation patterns of BM and PBSC were comparable. B cells were collected in the high speed fractions followed by T and NK cells. In contrast, progenitor cells were collected in lower speed fractions. By adding successively T cell-depleted fractions to the RO fraction a BM transplant could be composed containing 0.7 x 10(6) T cells/kg and 90%, 89% and 68% recovery of CD34+, CFU-GM and BFU-E. PBSC were separated in four CCE runs inducing higher numbers of T cells in the graft (4.4 x 10(6)/kg) and 54% CD34+, 46% CFU-GM and 37% BFU-E recovery. Time of engraftment was not delayed and no graft failure was observed. The higher number of T cells was not associated with higher incidence of GVHD. Acute GVHD > or = grade III occurred in 0 of 16 BM and two of 12 PBSC recipients; extensive chronic GVHD was observed in four of 15 and three of nine recipients, respectively. To study immature cells in the graft, CD34 subpopulations and cells with long-term repopulating ability, determined using cobble-stone area formation (CAFC assay), were evaluated in each fraction. The separation patterns in BM and PBSC were comparable. Cells with mature and immature phenotype were enriched in lower speed fractions (mean recovery of 74% CD34+/CD13-/DR-). The CAFC week 2, 4 and 6 were also enriched in these fractions. These data show that the used CCE procedure is a reliable method to deplete T cells from stem cell transplants without substantial loss of immature and mature progenitors.  (+info)

Impaired collateral vessel development associated with reduced expression of vascular endothelial growth factor in ApoE-/- mice. (50/3240)

BACKGROUND: The impact of disordered lipid metabolism on collateral vessel development was studied in apolipoprotein (apo)E-/- mice with unilateral hindlimb ischemia. METHODS AND RESULTS: Hindlimb blood flow and capillary density were markedly reduced in apoE-/- mice versus C57 controls. This was associated with reduced expression of vascular endothelial growth factor (VEGF) in the ischemic limbs of apoE-/- mice. Cell-specific immunostaining localized VEGF protein expression to skeletal myocytes and infiltrating T cells in the ischemic limbs of C57 mice; in contrast, T-cell infiltrates in ischemic limbs of apoE-/- mice were severely reduced. The critical contribution of T cells to VEGF expression and collateral vessel growth was reinforced by the finding of accelerated limb necrosis in athymic nude mice with operatively induced hindlimb ischemia. Adenoviral VEGF gene transfer to apoE-/- mice resulted in marked augmentation of hindlimb blood flow and capillary density. CONCLUSIONS: These findings thus underscore the extent to which hyperlipidemia adversely affects native collateral development but does not preclude augmented collateral vessel growth in response to exogenous cytokines. Moreover, results obtained in the apoE-/- and athymic nude mice imply a critical role for infiltrating T cells as a source of VEGF in neovascularization of ischemic tissues.  (+info)

Increase in gamma interferon-secreting CD8(+), as well as CD4(+), T cells in lungs following aerosol infection with Mycobacterium tuberculosis. (51/3240)

Although it is well established that CD4(+) T cells are required for the protective immune response against tuberculosis (TB), there is some evidence that CD8(+) T cells are also involved in the host response to Mycobacterium tuberculosis. There is, however, a paucity of information on the pulmonary CD8(+) T-cell response during infection. We therefore have compared the changes in both CD8(+) and CD4(+) T cells following aerosol infection with M. tuberculosis. There was an observed delay between the peak of infection and the activated T-cell response in the lung. The kinetics of CD8(+) and CD4(+) T-cell responses in the lung were identical, both peaking at week 8, 4 weeks later than the peak of cellular response in draining lymph nodes. Similar changes in activation/memory phenotypes occurred on the pulmonary CD8(+) and CD4(+) T cells. Following in vitro restimulation, both subsets synthesized gamma interferon, a cytokine essential for controlling M. tuberculosis infection. Since lung CD8(+) T cells are actively expanded during aerosol M. tuberculosis infection, it is important that both CD8(+) and CD4(+) T cells be targeted in the design of future TB vaccines.  (+info)

Ultraviolet radiation-induced suppression of natural killer cell activity is enhanced in xeroderma pigmentosum group A (XPA) model mice. (52/3240)

Xeroderma pigmentosum group A gene-deficient mice easily develop skin cancers by ultraviolet radiation. Natural killer cells play an important part in tumor surveillance. To study whether ultraviolet radiation-induced suppression of natural killer cell function is involved in the high incidence of skin tumors in patients with xeroderma pigmentosum, we analyzed the number and activity of natural killer cells in ultraviolet B-irradiated xeroderma pigmentosum A model mice. The number of natural killer cells in peripheral blood significantly decreased after ultraviolet B-irradiation only in xeroderma pigmentosum A mice, but those in the spleen were not affected. As compared with the wild-type mice, the xeroderma pigmentosum A mice displayed a higher level of spontaneous splenic natural killer cell activity (10%-15% vs 3%) and inducible natural killer activity (30%-50% vs 20%-25%) after injection of polyinosinic:polycytidylic acid. At 24 h after the last irradiation of three and five daily consecutive exposures to 500 mJ per cm2-ultraviolet B, however, the natural killer activity in xeroderma pigmentosum A mice decreased to 60 and 30% of the preirradiated level, respectively, but it did not in the wild-type mice. The depression of natural killer activity in xeroderma pigmentosum A mice recovered to a normal level at 10 and 15 d after the last irradiation, respectively. The high incidence of skin cancers in xeroderma pigmentosum patients may be mainly due to a defect in the repair of ultraviolet-damaged DNA of cutaneous cells, and possibly also due to an intensified ultraviolet-induced immunosuppression. Moreover, the present study suggests that the enhanced ultraviolet-induced impairment of natural killer function could be partially involved in cancer development.  (+info)

Severe impairment of B cell function in lpr/lpr mice expressing transgenic Fas selectively on B cells. (53/3240)

Transgenic lpr/lpr mice expressing functional Fas selectively on B cells were produced in an attempt to elucidate the role of Fas on B cells in the regulation of autoantibody production. The homozygous lpr/lpr mice carrying the transgene did not produce anti-double-stranded DNA antibodies throughout their lives, whereas the development of abnormal lpr T cells (double negative, B220(+)) was not suppressed. Further analyses, however, revealed that the expression of the transgenic Fas on B cells of lpr/lpr homozygous mice resulted in severe impairment of the B cell function. The defect was characterized by a decrease in the number of mature peripheral B cells, a reduction in the serum Ig level and the total failure of B cells to mount antibody responses to stimulations of T-dependent as well as T-independent antigens. Such a defect was prominent only when the transgene was expressed on the lpr/lpr homozygous background. On the contrary, B cells of the transgenic lpr/lpr mice were shown to be capable of producing Ig when stimulated with anti-CD40 in the presence of IL-4 and IL-5. Furthermore, lpr/lpr T cells showed enhanced non-specific cytolytic activity. These observations suggested that the observed B cell defect was probably attributable to the destruction of activated B cells expressing transgenic Fas by aggressive lpr/lpr T cells.  (+info)

Diversity of NK cell receptor repertoire in adult and neonatal mice. (54/3240)

Murine NK cytotoxicity is regulated by two families of MHC class I-specific receptors, namely Ly49 and CD94/NKG2. We developed a single-cell RT-PCR method to analyze expression of all known Ly49 and NKG2A genes in individual NK cells and determined the receptor repertoires of NK cells from adult and neonatal (1-wk-old) C57BL/6 mice. In adult mouse NK cells, up to six different receptors were coexpressed in random combinations. Of 62 NK cells examined, 42 different patterns of receptor expression were observed. Most of them expressed at least one Ly49, whereas NKG2A was detected in 32% of the cells. Over 75% of them expressed Ly49C, I, or NKG2A, which are thought to recognize self-class I MHC (H-2b). Coexpression of multiple Ly49 receptors and NKG2A was stochastic. In contrast, very few neonatal NK cells expressed any Ly49, but almost 60% of them expressed NKG2A. These results demonstrate that adult NK cells are quite heterogeneous and have diverse receptor repertoires. They also suggest that the expression of NKG2A precedes Ly49 expression in NK cell ontogeny, and NKG2A is a major inhibitory receptor in neonatal NK cells.  (+info)

In situ T cell responses against melanoma comprise high numbers of locally expanded T cell clonotypes. (55/3240)

It is well established that melanoma cells express Ags that are recognized by autologous T cells in vitro. Tumor-infiltrating lymphocytes in situ comprise clonotypic T cells, suggesting that their expansion is driven by Ag stimulation. Still, little is known about the detailed characteristics of the in situ T cell response. In the present study, we scrutinized this response by analyzing multiple metastatic lesions for the presence of clonotypic T cells. This approach was chosen to distinguish whether the clonal T cell expansion occurs as a systemic or localized phenomenon. TCR clonotype mapping of six s.c. metastases from two patients revealed the presence of multiple (from 40 to >60) clonotypic T cells in all lesions. Clonotypic T cells were present in TCR beta-variable regions expressed both at high and low levels. Comparison of the T cell clonotypes present in different lesions from individual patients demonstrated that, in general, clonotypes were exclusively detected in a single lesion. Hence, anti-melanoma T cell responses are much more heterogeneous than previously anticipated and accommodate a predominance of strictly localized T cell clonotypes.  (+info)

Increased apoptosis in patients with major depression: A preliminary study. (56/3240)

Apoptosis is a programmed cell death that can be observed in normal cells. Major depression poses a combination of a depressed and destructive autoimmune reaction. We measured apoptosis in the PBLs of seven patients with major depression and in age- and sex-matched controls. We observed significantly increased apoptosis in the PBLs of depressive patients (p < 0.05). These preliminary results could contribute to an understanding of the interactions of the CNS with the immune system, which could lead to the increased vulnerability of the CNS in depressive disorders. Further studies are needed to establish these results.  (+info)