Diving and the risk of barotrauma. (1/841)

STUDY OBJECTIVES: Pulmonary barotrauma (PBT) of ascent is a feared complication in compressed air diving. Although certain respiratory conditions are thought to increase the risk of suffering PBT and thus should preclude diving, in most cases of PBT, risk factors are described as not being present. The purpose of our study was to evaluate factors that possibly cause PBT. DESIGN: We analyzed 15 consecutive cases of PBT with respect to dive factors, clinical and radiologic features, and lung function. They were compared with 15 cases of decompression sickness without PBT, which appeared in the same period. RESULTS: Clinical features of PBT were arterial gas embolism (n = 13), mediastinal emphysema (n = 1), and pneumothorax (n = 1). CT of the chest (performed in 12 cases) revealed subpleural emphysematous blebs in 5 cases that were not detected in preinjury and postinjury chest radiographs. A comparison of predive lung function between groups showed significantly lower midexpiratory flow rates at 50% and 25% of vital capacity in PBT patients (p < 0.05 and p < 0.02, respectively). CONCLUSIONS: These results indicate that divers with preexisting small lung cysts and/or end-expiratory flow limitation may be at risk of PBT.  (+info)

Renal ischemia/reperfusion leads to macrophage-mediated increase in pulmonary vascular permeability. (2/841)

BACKGROUND: Despite the advent of dialysis, survival with acute renal failure when associated with multiorgan failure is poor. The development of lung injury after shock or visceral ischemia has been shown; however, the effects of isolated renal ischemia/reperfusion injury (IRI) on the lungs are unclear. We hypothesized that isolated renal IRI could alter pulmonary vascular permeability (PVP) and that macrophages could be important mediators in this response. METHODS: Rats (N = 5 per group) underwent renal ischemia for 30 minutes, followed by reperfusion. Lung vascular permeability was evaluated by quantitation of Evans blue dye extravasation from vascular space to lung parenchyma at 1, 24, 48, or 96 hours after reperfusion. Serum was collected for blood urea nitrogen and creatinine at each time point. To examine the role of the macrophage, the macrophage pacifant CNI-1493, which inhibits the release of macrophage-derived inflammatory products, was administered in a blinded fashion during renal IRI. RESULTS: PVP was significantly (P < 0.05) increased at 24 hours and peaked at 48 hours after IRI compared with shams as well as baseline levels. PVP after IRI became similar to shams after 96 hours. This correlated with increases in blood urea nitrogen and creatinine at similar time points. At 48 hours, CNI-1493 significantly abrogated the increase in PVP compared with IRI alone. However, CNI-1493 did not alter the course of the acute renal failure. Pulmonary histology demonstrated interstitial edema, alveolar hemorrhage, and red blood cell sludging after renal IRI, which was partially attenuated by CNI-1493. CONCLUSIONS: Increased PVP develops after isolated renal IRI, and macrophage-derived products are mediators in this response. These findings have implications for understanding the mechanisms underlying respiratory dysfunction associated with acute renal failure.  (+info)

Isoproterenol improves ability of lung to clear edema in rats exposed to hyperoxia. (3/841)

Exposure of adult rats to 100% O(2) results in lung injury and decreases active sodium transport and lung edema clearance. It has been reported that beta-adrenergic agonists increase lung edema clearance in normal rat lungs by upregulating alveolar epithelial Na(+)-K(+)-ATPase function. This study was designed to examine whether isoproterenol (Iso) affects lung edema clearance in rats exposed to 100% O(2) for 64 h. Active Na(+) transport and lung edema clearance decreased by approximately 44% in rats exposed to acute hyperoxia. Iso (10(-6) M) increased the ability of the lung to clear edema in room-air-breathing rats (from 0.50 +/- 0.02 to 0.99 +/- 0. 05 ml/h) and in rats exposed to 100% O(2) (from 0.28 +/- 0.03 to 0. 86 +/- 0.09 ml/h; P < 0.001). Disruption of intracellular microtubular transport of ion-transporting proteins by colchicine (0. 25 mg/100 g body wt) inhibited the stimulatory effects of Iso in hyperoxia-injured rat lungs, whereas the isomer beta-lumicolchicine, which does not affect microtubular transport, did not inhibit active Na(+) transport stimulated by Iso. Accordingly, Iso restored the lung's ability to clear edema after hyperoxic lung injury, probably by stimulation of the recruitment of ion-transporting proteins (Na(+)-K(+)-ATPase) from intracellular pools to the plasma membrane in rat alveolar epithelium.  (+info)

Inhaled NO preadministration modulates local and remote ischemia-reperfusion organ injury in a rat model. (4/841)

Inhaled nitric oxide (iNO) has been shown to have a protective effect in lung ischemia-reperfusion (I/R)-induced injuries. We studied the role of iNO (10 parts/million for 4 h) administered before I/R. In an isolated perfused lung preparation, iNO decreased the extravascular albumin accumulation from 2,059 +/- 522 to 615 +/- 105 microl and prevented the increase in lung wet-to-dry weight ratio. To study the mechanisms of this prevention, we evaluated the role of nitric oxide (NO) transport and lung exposure with matched experiments by using either lungs or blood of animals exposed to iNO and blood or lungs of naive animals. iNO-exposed blood with naive lungs did not limit the extravascular albumin accumulation (2,561 +/- 397 microl), but iNO-exposed lungs showed a leak not significantly different from the group in which both lungs and blood were iNO exposed (855 +/- 224 vs. 615 +/- 105 microl). An improvement in heart I/R left ventricular developed pressure in the animals exposed to iNO showed that blood-transported NO was, however, sufficient to trigger remote organ endothelium and reduce the consequences of a delayed injury. In conclusion, preventive iNO reduces the consequences of lung I/R injuries by a mechanism based on tissue or endothelium triggering.  (+info)

ICAM-1 and CD11b inhibition worsen outcome in rats with E. coli pneumonia. (5/841)

We investigated whether inhibiting an endothelial adhesion molecule [intracellular adhesion molecule 1 (ICAM-1)] would alter outcome and lung injury in a similar fashion to inhibition of a leukocyte adhesion molecule (integrin CD11b) in a rat model of gram-negative pneumonia. Inhibition of ICAM-1 with monoclonal antibody (MAb) 1A29 (1 mg/kg sc or 0.2 or 2 mg/kg iv, q 12 h x 3) or of CD11b with MAb 1B6 (1 mg/kg sc, q 12 h x 3) were compared against similarly administered placebo proteins in rats challenged with intrabronchial Escherichia coli. After challenge, all animals were treated with antibiotics. ICAM-1 MAb (6 mg/kg, iv, total dose) increased mortality vs. control (P = 0.03). CD11b MAb (3 mg/kg, sc, total dose) did not significantly (P = 0.16) increase mortality rates, but this was not in a range of probability to exclude a harmful effect. All other doses of MAb had no significant effect on survival rates. ICAM-1 and CD11b MAbs had significantly different effects on the time course of lung injury, circulating white cells and lymphocytes, and lung lavage white cells and neutrophils (P = 0.04-0.003). CD11b MAb decreased, whereas ICAM-1 MAb increased these measures compared with control from 6 to 12 h after E. coli. However, from 144 to 168 h after E. coli both MAbs increased these measures compared with control rats but to a greater level with CD11b MAb. Thus both ICAM-1 and CD11b appear to be necessary for survival during E. coli pneumonia. Although these adhesion molecules may participate differently in early lung injury, with CD11b increasing and ICAM-1 decreasing inflammation and injury, both are important for the resolution of later injury. During gram-negative pneumonia the protective roles of ICAM-1 and CD11b may make their therapeutic inhibition difficult.  (+info)

Intratracheal anti-tumor necrosis factor-alpha antibody attenuates ventilator-induced lung injury in rabbits. (6/841)

To evaluate the role of tumor necrosis factor (TNF)-alpha in the pathogenesis of ventilator-induced lung injury, we 1) measured TNF-alpha production in the lung caused by conventional mechanical ventilation (CMV) and 2) evaluated the protective effect of anti-TNF-alpha antibody (Ab) in saline-lavaged rabbit lungs. After they received saline lung lavage, rabbits were intratracheally instilled with 1 mg/kg of polyclonal anti-TNF-alpha Ab in the high-dose group (n = 6), 0.2 mg/kg of anti-TNF-alpha Ab in the low-dose group (n = 6), serum IgG fraction in the Ab control group (n = 6), and saline in the saline control group (n = 7). Animals then underwent CMV for 4 h. Levels of TNF-alpha in lung lavage fluid were significantly higher after CMV than before in both control groups. Pretreatment with intratracheal instillation of high and low doses of anti-TNF-alpha Ab improved oxygenation and respiratory compliance, reduced the infiltration of leukocytes, and ameliorated pathological findings. CMV led to TNF-alpha production in the lungs, and intratracheal instillation of anti-TNF-alpha Ab attenuated CMV-induced lung injury in this model.  (+info)

Pressure is proinflammatory in lung venular capillaries. (7/841)

Endothelial responses may contribute importantly to the pathology of high vascular pressure. In lung venular capillaries, we determined endothelial [Ca(2+)](i) by the fura-2 ratioing method and fusion pore formation by quantifying the fluorescence of FM1-43. Pressure elevation increased endothelial [Ca(2+)](i). Concomitantly evoked exocytotic events were evident in a novel spatial-temporal pattern of fusion pore formation. Fusion pores formed predominantly at vascular branch points and colocalized with the expression of P-selectin. Blockade of mechanogated Ca(2+) channels inhibited these responses, identifying entry of external Ca(2+) as the critical triggering mechanism. These endothelial responses point to a proinflammatory effect of high vascular pressure that may be relevant in the pathogenesis of pressure-induced lung disease.  (+info)

Pulmonary and bronchial circulatory responses to segmental lung injury. (8/841)

In regional lung injury, pulmonary blood flow decreases to the injured regions, and anastomotic bronchial blood flow and total bronchial blood flow increase. However, the pattern of redistribution of the two blood flows to the injured and noninjured areas is not known. In six anesthetized sheep, pulmonary and bronchial blood flows were measured with 15-microm fluorescent microspheres by using the reference flow method. Blood flows were measured in the control state and 1 h after instilling 1 ml/kg of 0. 1 N hydrochloric acid into a dependent segment of the left lung. The lungs were then removed, dried, and cubed into approximately 2-cm cubes while spatial coordinates were noted. Blood flow to each piece was calculated. Mean pulmonary blood flow to the noninjured pieces went from 730 +/- 246 to 574 +/- 347 ml/min (P = 0.22), whereas in the injured pieces the pulmonary blood flow decreased from 246 +/- 143 to 56 +/- 46 ml/min (P < 0.01). In contrast, bronchial blood flow to the injured pieces increased from 0.51 +/- 0.1 to 1.43 +/- 0. 85 ml/min (P = 0.005). We measured the change in flow as it related to the distance from the center of the injured area. Pulmonary blood flow decreased most at the center of the injury, whereas bronchial blood flow doubled at the center of injury and decreased with the distance away from the injury. The absolute increase in bronchial blood flow was substantially less than the decrease in pulmonary blood flow in the injured pieces. We also partitioned the observed variation in pulmonary and bronchial blood flow into that attributable to structure and that due to lung injury and found that 48% of the variation in pulmonary blood flow could be attributed to structure, whereas in the bronchial circulation 70% was attributable to structure. The reasons for these differences are not known and may reflect the intrinsic properties of the systemic and pulmonary circulations.  (+info)