Improving the classroom listening skills of children with Down syndrome by using sound-field amplification. (9/204)

Many children with Down syndrome have fluctuating conductive hearing losses further reducing their speech, language and academic development. It is within the school environment where access to auditory information is crucial that many children with Down syndrome are especially disadvantaged. Conductive hearing impairment which is often fluctuating and undetected reduces the child's ability to extract the important information from the auditory signal. Unfortunately, the design and acoustics of the classroom leads to problems in extracting the speech signal through reduced speech intensity due to the increased distance of the student from the teacher in addition to masking from excessive background noise. One potential solution is the use of sound-field amplification which provides a uniform amplification to the teacher's voice through the use of a microphone and loudspeakers. This investigation examined the efficacy of sound-field amplification for 4 children with Down syndrome. Measures of speech perception were taken with and without the sound-field system and found that the children perceived significantly more speech in all conditions where the sound-field system was used (p < .0001). Importantly, listening performance with the sound-field system was not affected by reducing the signal-to-noise ratio through increasing the level of background noise. In summary, sound-field amplification provides improved access to the speech signal for children with Down syndrome and as a consequence leads to improved classroom success.  (+info)

Dynamics of gamma-band activity during an audiospatial working memory task in humans. (10/204)

The representation of visual objects in short-term memory has been shown to be related to increased gamma-band activity in the electroencephalogram. Using a similar paradigm, we investigated oscillatory magnetoencephalographic activity in human subjects during a delayed matching-to-sample task requiring working memory of auditory spatial information. The memory task involved same-different judgments about the lateralization angle of pairs of filtered noise stimuli (S1 and S2) separated by 800 msec delays of background noise. This was compared with a control condition requiring the detection of a possible change in the background noise volume appearing instead of S2 (volume task). Statistical probability mapping revealed increased spectral activity at 59 Hz over left parietal cortex during the delay phase of the memory condition. In addition, 59 Hz coherence was enhanced between left parietal and right frontal sensors. During the end of the delay and during the presentation of S2, enhanced gamma-band activity at 67 Hz was observed over right frontal and later over midline parietal areas. In contrast, the volume task was characterized by increased left inferior frontotemporal 59 Hz spectral amplitude after S1. Apparently representation of the spatial position of a sound source is associated both with synchronization of networks in parietal areas involved in the auditory dorsal stream and with increased coupling between networks serving representation of audiospatial information and frontal executive systems. The comparison with S2 seemed to activate frontal and parietal neuronal ensembles. Gamma-band activity during the volume task may reflect auditory pattern encoding in auditory ventral stream areas.  (+info)

Growth of loudness in listeners with cochlear hearing losses: recruitment reconsidered. (11/204)

This article examines how loudness grows with increasing intensity near threshold in five listeners with hearing losses of predominantly cochlear origin. It provides evidence against the pervasive and long-held notion that such listeners show abnormally rapid loudness growth near their elevated thresholds. As in a previous study for listeners with normal hearing, loudness functions near threshold were derived from loudness matches between a pure tone and four- or ten-tone complexes using a simple model of loudness summation. This study assumed that the loudness function had the same form for any component of a complex, but a scale factor that depended on the amount of hearing loss allowed the loudness at threshold to vary with frequency. The best-fitting loudness functions had low-level local exponents [i.e., slopes of the low-level loudness function plotted as log(loudness) versus log(intensity)] that were within the normal range. At 0 dB SL, the average local exponents were 1.26 for the listeners with hearing losses compared with 1.31 for normal listeners, which indicates that loudness near threshold grows at similar rates in normal listeners and listeners with hearing losses. The model also indicated that, on average, the loudness at threshold doubled for every 16 dB of hearing loss. The increased loudness at threshold, together with somewhat enlarged local exponents around 20 dB SL, accounts for the near-normal loudness often obtained for high-SPL tones in listeners with hearing losses. Such loudness functions are consistent with the steep functions shown by classical data on loudness matches between tones for which thresholds are normal and tones for which thresholds are elevated. Thus, the present data indicate that an abnormally large loudness at an elevated threshold is likely to be a better definition of recruitment than the classical definition of it as an abnormally rapid growth of loudness above an elevated threshold.  (+info)

Temporal weighting in sound localization. (12/204)

The dynamics of sound localization were studied using a free-field direct localization task (pointing to sound sources) and an observer-weighting analysis that assessed the relative influence of each click in a click-train stimulus. In agreement with previous studies of the precedence effect and binaural adaptation, weighting functions showed increased influence of the onset click when the interclick interval (ICI) was short (<5 ms). For longer ICIs, all clicks in a train contributed roughly the same amount to listeners' localization responses. Finally, when a short gap was introduced in the middle of a train, the influence of the click immediately following the gap increased, in agreement with the "restarting" results obtained by Hafter and Buell [J. Acoust. Soc. Am. 88, 806-812 (1990)].  (+info)

Directional sensitivity of neurons in the primary auditory (AI) cortex: effects of sound-source intensity level. (13/204)

Transient sounds were delivered from different directions in virtual acoustic space while recording from single neurons in primary auditory cortex (AI) of cats under general anesthesia. The intensity level of the sound source was varied parametrically to determine the operating characteristics of the spatial receptive field. The spatial receptive field was constructed from the onset latency of the response to a sound at each sampled direction. Spatial gradients of response latency composing a receptive field are due partially to a systematic co-dependence on sound-source direction and intensity level. Typically, at any given intensity level, the distribution of response latency within the receptive field was unimodal with a range of approximately 3-4 ms, although for some cells and some levels, the spread could be as much as 20 or as little as 2 ms. Response latency, averaged across directions, differed among neurons for the same intensity level, and also differed among intensity levels for the same neuron. Generally, increases in intensity level resulted in decreases in the mean and variance, which follows an inverse Gaussian distribution. Receptive field models, based on response latency, are developed using multiple parameters (azimuth, elevation, intensity), validated with Monte Carlo simulation, and their spatial filtering described using spherical harmonic analysis. Observations from an ensemble of modeled receptive fields are obtained by linking the inverse Gaussian density to the probabilistic inverse problem of estimating sound-source direction and intensity. Upper bounds on acuity is derived from the ensemble using Fisher information, and the predicted patterns of estimation errors are related to psychophysical performance.  (+info)

Auditory influences on visual temporal rate perception. (14/204)

Visual stimuli are known to influence the perception of auditory stimuli in spatial tasks, giving rise to the ventriloquism effect. These influences can persist in the absence of visual input following a period of exposure to spatially disparate auditory and visual stimuli, a phenomenon termed the ventriloquism aftereffect. It has been speculated that the visual dominance over audition in spatial tasks is due to the superior spatial acuity of vision compared with audition. If that is the case, then the auditory system should dominate visual perception in a manner analogous to the ventriloquism effect and aftereffect if one uses a task in which the auditory system has superior acuity. To test this prediction, the interactions of visual and auditory stimuli were measured in a temporally based task in normal human subjects. The results show that the auditory system has a pronounced influence on visual temporal rate perception. This influence was independent of the spatial location, spectral bandwidth, and intensity of the auditory stimulus. The influence was, however, strongly dependent on the disparity in temporal rate between the two stimulus modalities. Further, aftereffects were observed following approximately 20 min of exposure to temporally disparate auditory and visual stimuli. These results show that the auditory system can strongly influence visual perception and are consistent with the idea that bimodal sensory conflicts are dominated by the sensory system with the greater acuity for the stimulus parameter being discriminated.  (+info)

The sound exposure of the audience at a music festival. (15/204)

During the Paleo Festival in Nyon, Switzerland, which took place from 24th to 29th July 2001, ten volunteers were equipped each evening with small sound level meters which continuously monitored their sound exposure as they circulated among the various festival events. Sound levels at the mixing console and at the place where people are most heavily exposed (in front of the speakers) were measured simultaneously. In addition, a sample of 601 people from the audience were interviewed over the six days of the festival and asked their opinion of sound level and quality, as well as provide details of where in the arena they preferred to listen to the concerts, whether they used ear plugs, if they had experienced any tinnitus, and if so how long it had persisted. The individual sound exposure during a typical evening was on average 95 dB(A) although 8% of the volunteers were exposed to sound levels higher then 100 dB(A). Only 5% of the audience wore ear plugs throughout the concert while 34% used them occasionally. While some 36% of the people interviewed reported that they had experienced tinnitus after listening to loud music, the majority found both the music quality and the sound level good. The sound level limit of 100 dB(A) at the place where the people are most heavily exposed seems to be a good compromise between the public heath issue, the demands of artists and organisers, and the expectations of the public. However, considering the average sound levels to which the public are exposed during a single evening, it is recommended that ear plugs be used by concert-goers who attend more than one day of the festival.  (+info)

Amplitude and frequency-modulated stimuli activate common regions of human auditory cortex. (16/204)

Hall et al. (Hall et al., 2002, Cerebral Cortex 12:140-149) recently showed that pulsed frequency-modulated tones generate considerably higher activation than their unmodulated counterparts in non-primary auditory regions immediately posterior and lateral to Heschl's gyrus (HG). Here, we use fMRI to explore the type of modulation necessary to evoke such differential activation. Carrier signals were a single tone and a harmonic-complex tone, with a 300 Hz fundamental, that were modulated at a rate of 5 Hz either in frequency, or in amplitude, to create six stimulus conditions (unmodulated, FM, AM). Relative to the silent baseline, the modulated tones, in particular, activated widespread regions of the auditory cortex bilaterally along the supra-temporal plane. When compared with the unmodulated tones, both AM and FM tones generated significantly greater activation in lateral HG and the planum temporale, replicating the previous findings. These activation patterns were largely overlapping, indicating a common sensitivity to both AM and FM. Direct comparisons between AM and FM revealed a higher magnitude of activation in response to the variation in amplitude than in frequency, plus a small part of the posterolateral region in the right hemisphere whose response was specifically AM-, and not FM-, dependent. The dominant pattern of activation was that of co-localized activation by AM and FM, which is consistent with a common neural code for AM and FM within these brain regions.  (+info)