Nephron distribution of total low Km cyclic AMP phosphodiesterase in mouse, rat and rabbit kidney. (65/518)

The activity of cAMP degradation enzyme, cAMP phosphodiesterase (cAMP PDE), in renal tubules is a critically important factor in determining cellular cAMP levels, particularly in response to hormones. In this study we examine the nephron distribution of cAMP PDE activity in the mouse, rat and rabbit kidney and important cellular regulators of cAMP PDE, namely calmodulin and adenosine triphosphate (ATP). We assayed total low Km cAMP PDE in microdissected tubule segments, using 10(-6) M (3H) cAMP as a substrate. Activities were expressed in fentomol cAMP hydrolyzed per minute per mm tubular length or per one glomerulus. The content of ATP was measured in outer medullary collecting duct and medullary thick ascending limb of Henle's loop with microbioluminescence assay using firefly luciferase. In mouse kidney, cAMP PDE was significantly higher in all tubular segments compared to glomerulus. Proximal convoluted tubule, proximal straight tubule, medullary thick ascending limb of Henle's loop (mTAL), and outer medullary collecting duct (OMCD) had intermediated activity. Greater cAMP PDE activity was detected in cortical ascending limb of Henle's loop (cTAL), cortical collecting duct and in distal convoluted tubule (DCT). The highest activity was found in connecting tubules. In rat, nephron distribution of cAMP PDE activities was similar to mouse, except that activity in glomeruli was higher than in mouse glomeruli. In rabbit, nephron distribution of cAMP PDE activities was different from those of mouse and rat. There was no single prominent segment with high cAMP PDE activity. DCT and cTAL showed low enzyme activity. Overall, the highest cAMP PDE activities were measured in the mouse and the lowest were measured in the rabbit nephrons, with those of rat nephron showing an intermediate activity. The maximum effective dose of the calmodulin antagonist, trifluoperazine (200 microM), inhibited cAMP PDE in all nephron segments from the rat kidney. However, there is no statistical significance of its inhibition among nephron segments. In OMCD and mTAL of the rat kidney, cAMP PDE activity was inhibited by ATP (5 mM to approximately 10 mM) which is far beyond the physiological concentartion of ATP in normal epithelial cell. Actual determinations of ATP in mTAL and OMCD were 0.1 mM and 0.17 mM, respectively. These observations show that distal segments of tubules have more active catabolism of cAMP than proximal segments. cAMP PDE in each nephron segment appear to be almost equally dependent on trifluoperazine-sensitive pathway that may reflect the Ca2+-calmodulin system. Cellular concentration of ATP might not be involved in the regulation of the total low Km cAMP PDE activity in rat mTAL and OMCD.  (+info)

Sodium chloride, urea, and water transport in the thin ascending limb of Henle. Generation of osmotic gradients by passive diffusion of solutes. (66/518)

Studies were designed to examine whether the thin ascending limb of Henle (tALH) decreases its luminal solute concentration by an active or a passive transport process. In all experiments isolated segments of rabbit tALH were perfused in vitro. When tubules were perfused with solutions identical to the bath, active transport of NaCl was excluded by the following: (a) osmolality of the collected fluid remained unchanged and the same as the bath. (b) net water reabsorption could not be demonstrated, and (c) transtubular potential difference was zero. Isotopic permeability coefficients (x 10(-5) cm s-1) were calculated from the disappearance rate of the respective isotope added to the perfusate. These values indicate that tALH is moderately permeable to [14C]urea (6.97 +/- 1.95) while having a higher permeability to 22Na (25.5 +/- 1.8) and [not readable: see text]Cl (117 +/- 9.1) than any other segment similarly studied. The influx (bath-to-lumen) isotopic permeabilities were not statistically different from the above efflux permeabilities. Osmotic water permeability was immeasurably small. When tALH were perfused with a 600 mosmol/liter solution predominantly of NaCl against a 600 mosmol/liter bath in which 50% of osmolality was NaCl and 50% urea (to simulate in vivo papillary interstitium), the collected fluid osmolality was decreased significantly below that of the bath (300 mosmol/liter/mm of tubule). The decrease in osmolality was due to greater efflux of NaCl as compared to influx of urea. We conclude that active transport of salt by the tALH was not detected by the experimental protocol of the current studies, and that the unique membrane characteristics of tALH allows for generation of osmotic gradients (lumen less concentrated than adjacent surroundings) on purely passive mechanisms when perfused with isosmolal salt solutions in a bath with appropriate salt and urea concentrations. These findings are consistent with the passive counter-current model previously proposed from this laboratory.  (+info)

Renal regulation of acid-base equilibrium during chronic administration of mineral acid. (67/518)

Previous studies in metabolic alkalosis have demonstrated that two factors are the prime determinants of acid excretion and bicarbonate reabsorption; first, the diversion to distal exchange sites of sodium previously reabsorbed in the proximal tubule and loop of Henle; and, second, a stimulus to sodium-cation exchange greater than that produced by a low-salt diet alone. In the present study we have examined the hypothesis that these two factors are also the prime determinants of acid excretion during the administration of mineral acid loads. To test this hypothesis, we have administered to dogs ingesting a low NaCl diet a daily dose of 7 meq/kg of H+ with anions (chloride, sulfate, or nitrate) whose differing degrees of reabsorbability influence the speed and completeness with which each is delivered to the distal nephron with its accompanying Na+. After 2-3 wk of acid administration, and after an initial urinary loss of Na+ and K+, the steady-state value for plasma [HCO3-] was 8.6 meq/liter below control in the HCl group, 3.7 meq/liter below control in the H2SO4 group, and unchanged from control in the HNO3 group; all of these values were significantly different from each other. We would propose the following explanation for our findings: when HCl is administered chronically, marked acidosis occurs because distal delivery of Cl- is restricted by the ease with which the Cl- can be reabsorbed in the proximal portions of the nephron. Only when Cl- retention produces sufficient hyperchloremia to insure delivery of Na+ (previously reabsorbed in proximal tubule and loop of Henle) to the distal nephron in quantities equal to ingested Cl is this primary constraint removed. In the case of sulfuric and nitric acids, there is no constraint on distal delivery, the nonreabsorbability of the administered anion causing prompt, total delivery of Na+ to exchange sites in quantities equal to administered hydrogen. Thus, with H2SO4 and HNO3 the sole constraint on removal of the acid load is the inability of the distal exchange mechanism to conserve the Na+ increment fully by means of H+ exchange. Escape of Na+ and K+ into the urine and the resulting stimulus to Na(+)-H+ exchange remove this constraint and are responsible for establishment of a new steady-state of acid-base equilibrium at plasma [HCO3-] levels significantly higher than those seen with HCl. The feeding of HCl in the presence of a normal salt intake led to a degree of metabolic acidosis not significantly different from that seen in dogs ingesting a low-salt diet. We suggest that the presence of dietary sodium at distal exchange sites did not enhance acid excretion because it is only after a loss of body sodium stores that sodium avidity is increased sufficiently to allow full removal of the acid load. The present findings indicate that the fundamental factors controlling acid excretion and bicarbonate reabsorption in metabolic acidosis are closely similar to those operative in metabolic alkalosis.  (+info)

Effects of loop diuretics on angiotensin II-stimulated vascular smooth muscle cell growth. (68/518)

BACKGROUND: Torasemide and furosemide are diuretics that inhibit the Na(+), K(+), 2Cl(-) co-transporter localized in cells from the ascending limb of the loop of Henle. The effects of torasemide and furosemide on cell growth induced by angiotensin II (Ang II) were investigated in cultured vascular smooth muscle cells (VSMCs) obtained from the aorta of adult spontaneously hypertensive rats (SHR). METHODS: Cell growth was determined by DNA and protein synthesis as measured by [3H]thymidine and [3H]leucine incorporation, respectively. Proliferation of VSMCs was measured using a non-radioactive colorimetric cell proliferation assay. RESULTS: Ang II (10(-7) M) signficantly increased DNA and protein synthesis and cell proliferation in VSMCS: These effects were completely abolished by the Ang II type 1 receptor antagonist irbesartan (10(-6) M). Ang II-induced [3H]leucine incorporation was reduced in a dose-dependent way by torasemide (IC(50) value: 7.7+/-0.8x10(-7) M) but not by furosemide. Neither torasemide nor furosemide modified Ang II-stimulated [3H]thymidine incorporation or proliferation in VSMCs. CONCLUSIONS: These results indicate that torasemide, but not furosemide, inhibits Ang II-induced protein synthesis in VSMCs from SHR. Thus, it is suggested that the capacity of torasemide to block this trophic action of Ang II in rat VSMCs is not mediated by inhibition of the Na(+), K(+), 2Cl(-) co-transport mechanism.  (+info)

Cellular localization of the potassium channel Kir7.1 in guinea pig and human kidney. (69/518)

BACKGROUND: K(+) channels have important functions in the kidney, such as maintenance of the membrane potential, volume regulation, recirculation, and secretion of potassium ions. The aim of this study was to obtain more information on the localization and possible functional role of the inwardly rectifying K(+) channel, Kir7.1. METHODS: Kir7.1 cDNA (1114 bp) was isolated from guinea pig kidney (gpKir7.1), and its tissue distribution was analyzed by reverse transcriptase-polymerase chain reaction (RT-PCR). In addition, a genomic DNA fragment (6153 bp) was isolated from a genomic library. cRNA was expressed in Xenopus laevis oocytes for functional studies. Immunohistochemistry and RT-PCR were used to localize Kir7.1 in guinea pig and human kidney. RESULTS: The expression of gpKir7.1 in Xenopus laevis oocytes revealed inwardly rectifying K(+) currents. The reversal potential was strongly dependent on the extracellular K(+) concentration, shifting from -14 mV at 96 mmol/L K(+) to -90 mV at 1 mmol/L K(+). gpKir7.1 showed a low affinity for Ba(2+). Significant expression of gpKir7.1 was found in brain, kidney, and lung, but not in heart, skeletal muscle, liver, or spleen. Immunocytochemical detection in guinea pig identified the gpKir7.1 protein in the basolateral membrane of epithelial cells of the proximal tubule. RT-PCR analysis identified strong gpKir7.1 expression in the proximal tubule and weak expression in glomeruli and thick ascending limb. In isolated human tubule fragments, RT-PCR showed expression in proximal tubule and thick ascending limb. CONCLUSION: Our results suggest that Kir7.1 may contribute to basolateral K(+) recycling in the proximal tubule and in the thick ascending limb.  (+info)

Paracellin-1 is critical for magnesium and calcium reabsorption in the human thick ascending limb of Henle. (70/518)

BACKGROUND: A new protein, named paracellin 1 (PCLN-1), expressed in human thick ascending limb (TAL) tight junctions, possibly plays a critical role in the control of magnesium and calcium reabsorption, since mutations of PCLN-1 are present in the hypomagnesemia hypercalciuria syndrome (HHS). However, no functional experiments have demonstrated that TAL magnesium and calcium reabsorption were actually impaired in patients with HHS. METHODS: Genetic studies were performed in the kindred of two unrelated patients with HHS. Renal magnesium and calcium reabsorption in TAL were analyzed in one homozygous affected patient of each family, one patient with extrarenal hypomagnesemia (ERH), and two control subjects (CSs). RESULTS: We found two yet undescribed mutations of PCLN-1 (Gly 162 Val, Ala 139 Val). In patients with HHS, renal magnesium and calcium reabsorptions were impaired as expected; NaCl renal conservation during NaCl deprivation and NaCl tubular reabsorption in diluting segment were intact. Furosemide infusion in CS markedly increased NaCl, Mg, and Ca urinary excretion rates. In HHS patients, furosemide similarly increased NaCl excretion, but failed to increase Mg and Ca excretion. Acute MgCl(2) infusion in CS and ERH patient provoked a dramatic increase in urinary calcium excretion without change in NaCl excretion. When combined with MgCl(2) infusion, furosemide infusion remained able to induce normal natriuretic response, but was unable to increase urinary magnesium and calcium excretion further. In HHS patients, calciuric response to MgCl(2) infusion was blunted. CONCLUSION: This study is the first to our knowledge to demonstrate that homozygous mutations of PCLN-1 result in a selective defect in paracellular Mg and Ca reabsorption in the TAL, with intact NaCl reabsorption ability at this site. In addition, the study supports a selective physiological effect of basolateral Mg(2+) and Ca(2+) concentration on TAL divalent cation paracellular permeability, that is, PCLN-1 activity.  (+info)

Downregulation of AQP1, -2, and -3 after ureteral obstruction is associated with a long-term urine-concentrating defect. (71/518)

Previously, we demonstrated that 24 h of bilateral ureteral obstruction (BUO) and short-term release of BUO was associated with a decrease in the expression of aquaporin-2 (AQP2), polyuria, and a reduced urinary concentrating capacity (10). The purposes of the present study were to examine whether BUO and the long-term release of BUO (BUO-R) for 3, 14, and 30 days were associated with changes in the expression of renal AQP1, AQP2, and AQP3 and whether such changes were associated with parallel changes in urinary output and urinary concentrating capacity. Rats (n = 4-7 in each group) were kept in metabolic cages for measurements of urinary output. Kidneys were removed to determine the expression levels of AQP1, AQP2, and AQP3 by semiquantitative immunoblotting. AQP2 was downregulated after 24 h of BUO (42 +/- 3%). Downregulation of AQP2 persisted 3 (43 +/- 14%; P < 0.01) and 15 days after BUO-R (48 +/- 11%; P < 0.01) but was normalized 30 days after BUO-R. AQP3 showed a similar pattern. Moreover, AQP1 was downregulated in response to BUO (65 +/- 7%) and remained downregulated 3 days after BUO-R (41 +/- 5%), 14 days after BUO-R (57 +/- 8%), and 30 days after BUO-R (59 +/- 5%). BUO-R resulted in a significant polyuria that gradually decreased, although it remained significant at day 30. Urinary concentrating capacity remained significantly impaired when determined 3, 14, and 30 days after BUO-R in response to a 24-h period of thirst (1,712 +/- 270 vs. 2,880 +/- 91 mosmol/kgH2O at day 30, P < 0.05). In conclusion, the expression of AQP1, AQP2, and AQP3 were long-term downregulated after BUO-R, suggesting that dysregulation of aquaporins located at the proximal tubule, thin descending limb of the loop of Henle, and the collecting duct may contribute to the long-term polyuria and impairment of urinary concentrating capacity associated with obstructive nephropathy.  (+info)

Cell proliferation in the loop of henle in the developing rat kidney. (72/518)

In the developing rat kidney, there is no separation of the medulla into an outer and inner zone. At the time of birth, ascending limbs with immature distal tubule epithelium are present throughout the renal medulla, all loops of Henle resemble the short loop of adult animals, and there are no ascending thin limbs. It was demonstrated previously that immature thick ascending limbs in the renal papilla are transformed into ascending thin limbs by apoptotic deletion of cells and transformation of the remaining cells into a thin squamous epithelium. However, it is not known whether this is the only source of ascending thin limb cells or whether cell proliferation occurs in the segment undergoing transformation. This study was designed to address these questions and to identify sites of cell proliferation in the loop of Henle. Rat pups, 1, 3, 5, 7, and 14 d old, received a single injection of 5-bromo-2'-deoxyuridine (BrdU) 18 h before preservation of kidneys for immunohistochemistry. Thick ascending and descending limbs were identified by labeling with antibodies against the serotonin receptor, 5-HT(1A), and aquaporin-1, respectively. Proliferating cells were identified with an antibody against BrdU. BrdU-positive cells in descending and ascending limbs of the loop of Henle were counted and expressed as percentages of the total number of aquaporin-1-positive and 5-HT(1A)-positive cells in the different segments. In the developing kidney, numerous BrdU-positive nuclei were observed in the nephrogenic zone. Outside of this location, BrdU-positive tubule cells were most prevalent in medullary rays in the inner cortex and in the outer medulla. BrdU-labeled cells were rare in the papillary portion of the loop of Henle and were not observed in the lower half of the papilla after 3 d of age. BrdU-labeled nuclei were not observed in segments undergoing transformation or in newly formed ascending thin limb epithelium. It was concluded that the growth zone for the loop of Henle is located around the corticomedullary junction, and the ascending thin limb is mainly, if not exclusively, derived from cells of the thick ascending limb.  (+info)