Oval cell numbers in human chronic liver diseases are directly related to disease severity. (1/605)

The risk of developing hepatocellular carcinoma is significantly increased in patients with genetic hemochromatosis, alcoholic liver disease, or chronic hepatitis C infection. The precise mechanisms underlying the development of hepatocellular carcinoma in these conditions are not well understood. Stem cells within the liver, termed oval cells, are involved in the pathogenesis of hepatocellular carcinoma in animal models and may be important in the development of hepatocellular carcinoma in human chronic liver diseases. The aims of this study were to determine whether oval cells could be detected in the liver of patients with genetic hemochromatosis, alcoholic liver disease, or chronic hepatitis C, and whether there is a relationship between the severity of the liver disease and the number of oval cells. Oval cells were detected using histology and immunohistochemistry in liver biopsies from patients with genetic hemochromatosis, alcoholic liver disease, or chronic hepatitis C. Oval cells were not observed in normal liver controls. Oval cell numbers increased significantly with the progression of disease severity from mild to severe in each of the diseases studied. We conclude that oval cells are frequently found in subjects with genetic hemochromatosis, alcoholic liver disease, or chronic hepatitis C. There is an association between severity of liver disease and increase in the number of oval cells consistent with the hypothesis that oval cell proliferation is associated with increased risk for development of hepatocellular carcinoma in chronic liver disease.  (+info)

Antibodies against phospholipids and oxidized LDL in alcoholic patients. (2/605)

Antiphospholipid antibodies (APA) are a generic term describing antibodies that recognize various phospholipids. Hepatocyte damage is a cardinal event in the course of alcoholic liver injury and autoantibodies against phospholipids could play an important role in this process. APA in alcoholic patients seem to reflect membrane lesions, impairment of immunological reactivity, liver disease progression and they correlate significantly with disease severity. LDL oxidation is supposed to be one of the most important pathogenic mechanisms of atherosclerosis and antibodies against oxidized low-density lipoprotein (oxLDL) are some kind of an epiphenomenon of this process. The scope of our study was to determine some autoantibodies (IgG-oxLDL and antiphospholipid antibodies) and their possible changes in alcoholic patients. We studied IgG-oxLDL and four APA - anticardiolipin antibodies (ACA), antiphosphatidylserine antibodies (APSA) antiphosphatidylethanolamine antibodies (APE) and antiphosphatidylcholine antibodies (APCA) in 35 alcoholic patients with mildly affected liver function at the beginning of the abuse treatment. The control group consisted of 60 healthy blood donors. In the studied group, we obtained positive results concerning total ACA in 17.1 % of alcoholic patients (8.3 % in the control group), 11.4 % IgG-ACA (6.7 %), 8.6 % IgM-ACA (3.3 %), 14.3 % total APE (6.7 %), 14.3 % total APCA (8.3 %) and 20 % total APSA (8.3 % in the control group). The IgG-oxLDL (406.4+/-52.5 vs 499.9+/-52.5 mU/ml) was not affected in alcoholic patients. We conclude that the autoantibodies against oxLDL are present in sera of alcoholics and healthy blood donors. Based on our results which revealed a wide range of IgG-oxLDL titres in the healthy population, this parameter does not appear to be very promising for the evaluation of the risk of atherosclerosis. Alcoholics with only mild affection of liver functions did not exhibit a significantly higher prevalence of all studied antiphospholipid antibodies (ACA, APSA, APE, APCA) which could lead to membrane lesions in these patients.  (+info)

Heterozygotes for HFE mutations have no increased risk of advanced alcoholic liver disease. (3/605)

BACKGROUND: Iron overload is common in the livers of alcoholics and may play a role in disease pathogenesis. An MHC like gene, HFE, has recently been identified that is mutated in most patients with hereditary haemochromatosis (C282Y in 90% and H63D in 45% of the remainder). AIM: To examine the hypothesis that these mutations determine hepatic iron status in alcoholics and play a role in pre-disposition to advanced alcoholic liver disease. METHODS: The HFE gene was genotyped in 257 patients with alcoholic liver disease and 117 locally matched healthy volunteers. In addition, iron staining was scored (0-4) on biopsy specimens from fibrotic/cirrhotic patients with and without HFE mutations matched for age and sex. RESULTS: Some 15.7% of fibrotic/cirrhotic patients were C282Y heterozygotes compared with 13.7% of controls (p = 0.77). One control and three patients were C282Y homozygotes. Of chromosomes without the C282Y mutation, 68/442 (15.4%) of patients' chromosomes carried the H63D mutation compared with 36/216 (16.6%) of control chromosomes (p = 0.91). Significant (> grade 1) hepatocyte iron staining was seen in 6/23 C282Y heterozygotes and 4/26 H63D heterozygotes compared with 4/23 controls. CONCLUSIONS: Possession of a single copy of either of the two HFE mutations influences neither liver iron content nor the risk of fibrotic disease in alcoholics.  (+info)

Spur cell anaemia and hepatic iron stores in patients with alcoholic liver disease undergoing orthotopic liver transplantation. (4/605)

BACKGROUND: Following orthotopic liver transplantation (OLT) histological examination of explant livers from patients with alcoholic liver disease (ALD) sometimes shows extensive iron deposits in a distribution suggestive of homozygous haemochromatosis. AIMS: To use haemochromatosis gene (HFE) assays to distinguish between ALD with notable siderosis and hereditary haemochromatosis. To evaluate the possible influence of spur cell haemolytic anaemia on hepatic iron loading. PATIENTS: Thirty seven patients with ALD were abstinent for at least six months prior to OLT. Twenty three patients had transferrin saturations greater than 55%, 16 also had increased serum ferritin (>350 micrograms/l). Eight of 37 (22%) explant livers had grade 3 or 4 hepatic iron deposition, predominantly in hepatocytes. Of these, four had a hepatic iron index greater than 1. 9 and most seemed to have spur cell haemolytic anaemia. METHODS: Mutation analysis for C282Y and H63D mutations was performed on DNA extracts from peripheral blood or explant liver. Spur cell haemolytic anaemia was diagnosed when the haemoglobin was 105 g/l in the presence of notable acanthocytosis. RESULTS: None of the eight patients with grade 3 or 4 hepatic iron had evidence of the C282Y mutation. Two of the eight were heterozygous for H63D. None of the remaining 28 patients tested showed homozygous HFE mutations. Spur cell anaemia was present in six of the eight patients with heavy iron deposition and only one of the remaining patients. CONCLUSIONS: The HFE mutation was not present in these patients with advanced ALD and heavy iron loading. Spur cell haemolytic anaemia provides an alternative potential mechanism for the heavy iron loading.  (+info)

Serum concentrations and peripheral secretion of the beta chemokines monocyte chemoattractant protein 1 and macrophage inflammatory protein 1alpha in alcoholic liver disease. (5/605)

BACKGROUND: Alcoholic liver disease is associated with increased hepatic expression of monocyte chemoattractant protein 1 (MCP-1) and macrophage inflammatory protein 1alpha (MIP-1alpha). AIMS: To determine whether concentrations of chemokines in the peripheral circulation reflect disease activity, and whether chemokine secretion is restricted to the liver or is part of a systemic inflammatory response in alcoholic liver disease. PATIENTS: Fifty one patients with alcoholic liver disease and 12 healthy controls. METHODS: Peripheral vein (and hepatic vein in patients undergoing transjugular liver biopsy) chemokine concentrations were measured by ELISA. Chemokine secretion and transcription in isolated peripheral mononuclear cells were assessed using ELISA and in situ hybridisation in patients with severe alcoholic hepatitis. RESULTS: Serum MCP-1 concentrations were higher in alcoholic hepatitis compared with cirrhosis or healthy controls. MIP-1alpha concentrations were below the assay sensitivity in most patients. Serum MCP-1 concentrations correlated significantly with serum aspartate aminotransferase and creatinine. In severe alcoholic hepatitis, MCP-1 concentrations were higher in hepatic compared with peripheral veins; in mild alcoholic hepatitis there was no difference. Mononuclear cell secretion of both MCP-1 and MIP-1alpha was higher in severe alcoholic hepatitis compared with healthy controls, and chemokine mRNA was identified in monocytes. CONCLUSIONS: Serum MCP-1 concentrations are raised in alcoholic liver disease and reflect severity of hepatic inflammation. Monocyte secretion of both MCP-1 and MIP-1alpha is increased in severe alcoholic hepatitis. Both intrahepatic sources and peripheral mononuclear cells contribute to the raised serum MCP-1 concentrations.  (+info)

Alcohol-induced generation of lipid peroxidation products in humans. (6/605)

To address the hypothesis that elevated blood alcohol increases systemic oxidant stress, we measured urinary excretion of isoprostanes (iPs), free radical-catalyzed products of arachidonic acid. Ten healthy volunteers received acute doses of alcohol (Everclear-R) or placebo under randomized, controlled, double-blind conditions. Urinary iPF2a-III increased in a time- and dosage-dependent manner after dosing with alcohol, with the peak urinary iPF2a-III excretion correlating with the rise in blood alcohol. To determine whether oxidant stress was associated with alcohol-induced liver disease (ALD), we then studied the excretion of iP in individuals with a documented history of alcohol-induced hepatitis or alcohol-induced chronic liver disease (AC). Both urinary iPF2a-III and urinary iPF2a-VI were markedly increased in patients with acute alcoholic hepatitis. In general, urinary iPF2a-III was significantly elevated in cirrhotic patients, relative to controls, but excretion was more pronounced when cirrhosis was induced by alcohol than by hepatitis C. Excretion of iPF2a-VI, as well as 4-hydroxynonenal and the iPF2a-III metabolite, 2,3-dinor-5, 6-dihydro-iPF2a-III, was also increased in AC. Vitamin C, but not aspirin, reduced urinary iPs in AC. Thus, vasoactive iPs, which serve as indices of oxidant stress, are elevated in the urine in both acute and chronic ALD. Increased generation of iPs by alcohol in healthy volunteers is consistent with the hypothesis that oxidant stress precedes and contributes to the evolution of ALD.  (+info)

Small-intestinal mucosal protein synthesis and whole-body protein turnover in alcoholic liver disease. (7/605)

We used stable-isotope-labelled amino acids to measure the effects of alcoholic liver disease (ALD) on whole-body protein turnover and small-intestinal mucosal protein synthesis. Groups comprising eight patients with ALD and eight healthy control subjects were studied. They received primed, continuous intravenous infusions of L-[1-(13)C]leucine after an overnight fast; after 4 h, duodenal biopsies were obtained via endoscopy. Protein synthesis was calculated from protein labelling relative to intracellular leucine enrichment. Rates of duodenal mucosal protein synthesis were 2. 58+/-0.32%.h(-1) (mean+/-S.D.) in the normal subjects and 2.04+/-0. 18%.h(-1) in the ALD patients (P<0.003), despite the fact that the protein synthetic capacity (microgram of RNA/mg of protein) was higher in ALD patients (160+/-14 compared with 137+/-6 microgram/mg; P<0.003). The mucosal cell size (protein/DNA ratio) was lower in ALD patients (9.23+/-0.91 compared with 13+/-2.2 microgram/mg; P<0.002). Although the mean rates of whole-body protein turnover were not significantly different between the two groups (204+/-18 and 196+/-44 micromol leucine.h(-1).kg(-1) for ALD and control subjects respectively), there was, in the ALD patients, an inverse relationship between the rate of small-intestinal mucosal protein synthesis and the severity of ALD; furthermore, there was a direct relationship between the rate of whole-body protein turnover and the severity of ALD. Thus there was an inverse relationship between the rate of small-intestinal mucosal protein synthesis and the rate of whole-body protein turnover in ALD patients, which was not seen in the normal subjects.  (+info)

Pathogenesis of alcoholic liver disease: newer mechanisms of injury. (8/605)

The understanding of how alcohol damages the liver has expanded substantially over the last decade. In particular, the genetics of alcoholism, the genesis of fatty liver, the role of oxidant stress, interactions between endotoxin and the Kupffer cell, and the factors that control activation of the hepatic stellate cell (HSC) have been the focus of a great deal of research. Genetic mechanisms for increasing the risk of alcoholism include alterations in alcohol metabolizing enzymes as well as neurobiological differences between individuals. The development of fatty liver may involve both redox forces, oxidative stress, and alterations in peroxisome proliferator activated receptor function. Oxidative stress is now known to involve both microsomal and mitochondrial systems. Recent studies implicate stimulation of Kupffer cells by portal vein endotoxin as a cause of release of cytokines and chemokines, hepatocyte hyper-metabolism, and activation of HSC. These actions appear to be in part gender-dependent and may explain the susceptibility of women to alcoholic liver disease. Activation of HSC underlies liver fibrosis and cirrhosis of all types; control of this activation might permit control of the progression of fibrosis. These advances suggest a number of new approaches as therapy for alcoholic liver injury.  (+info)