Effects of chronic nitric oxide activation or inhibition on early hepatic fibrosis in rats with bile duct ligation. (1/499)

Hepatic fibrosis or increased liver collagen contents drive functional abnormalities that, when extensive, may be life threatening. The purpose of this study was to assess the effects of the chronic stimulation or inhibition of nitric oxide synthesis in rats with hepatic fibrosis induced by permanent common bile duct ligation (3 weeks) and the role of expression of the different nitric oxide synthase isoforms. Bile duct ligation led to an important accumulation of collagen in the hepatic parenchyma, as shown both histologically and by the hydroxyproline contents of livers. Bilirubin and serum enzyme activities (measured as markers of cholestasis) increased several-fold after bile duct ligation. The area of fibrotic tissue, liver hydroxyproline content and serum markers of cholestasis were clearly related in obstructed rats. The absence of modifications in haemodynamic parameters excludes circulatory changes from being responsible for the development of liver alterations. In animals treated with NG-nitro-L-arginine methyl ester (L-NAME) the area of fibrosis was similar to that of untreated animals, the signs of cholestasis and cellular injury being more evident. In rats treated with L-arginine the area of fibrosis was almost three times larger than that found in bile duct ligated rats and in L-NAME-treated bile duct ligated rats, although the observed biochemical changes were similar to those seen in rats treated with L-NAME. Our results with inducible nitric oxide synthase, obtained by Western blots and immunohistochemistry, indicate a greater expression of the inducible enzyme in bile duct ligated and L-arginine-treated animals and a lower expression in the L-NAME and control groups. Constitutive nitric oxide synthase expression, obtained by Western blots, was very similar in all groups, except for the L-arginine-treated rats in which it was lower. These results suggest that nitric oxide production may be a key factor in the development of fibrosis in bile duct ligated rats. They also support the hypothesis of a dual role for nitric oxide; one beneficial, mediated by its circulatory effects, and the second negative, through its local toxic effects.  (+info)

Blockade of type beta transforming growth factor signaling prevents liver fibrosis and dysfunction in the rat. (2/499)

We eliminated type beta transforming growth factor (TGF-beta) signaling by adenovirus-mediated local expression of a dominant-negative type II TGF-beta receptor (AdCATbeta-TR) in the liver of rats treated with dimethylnitrosamine, a model of persistent liver fibrosis. In rats that received a single application of AdCATbeta-TR via the portal vein, liver fibrosis as assessed by histology and hydroxyproline content was markedly attenuated. All AdCATbeta-TR-treated rats remained alive, and their serum levels of hyaluronic acid and transaminases remained at low levels, whereas all the AdCATbeta-TR-untreated rats died of liver dysfunction. The results demonstrate that TGF-beta does play a central role in liver fibrogenesis and indicate clearly in a persistent fibrosis model that prevention of fibrosis by anti-TGF-beta intervention could be therapeutically useful.  (+info)

Comparison of two aquaretic drugs (niravoline and OPC-31260) in cirrhotic rats with ascites and water retention. (3/499)

kappa-Opioid receptor agonists (niravoline) or nonpeptide antidiuretic hormone (ADH) V2 receptor antagonists (OPC-31260) possess aquaretic activity in cirrhosis; however, there is no information concerning the effects induced by the chronic administration of these drugs under this condition. To compare the renal and hormonal effects induced by the long-term oral administration of niravoline, OPC-31260, or vehicle, urine volume, urinary osmolality, sodium excretion, and urinary excretion of aldosterone (ALD) and ADH were measured in basal conditions and for 10 days after the daily oral administration of niravoline, OPC-31260, or vehicle to cirrhotic rats with ascites and water retention. Creatinine clearance, serum osmolality, ADH mRNA expression, and systemic hemodynamics were also measured at the end of the study. Niravoline increased water excretion, peripheral resistance, serum osmolality, and sodium excretion and reduced creatinine clearance, ALD and ADH excretion, and mRNA expression of ADH. OPC-31260 also increased water metabolism and sodium excretion and reduced urinary ALD, although the aquaretic effect was only evident during the first 2 days, and no effects on serum osmolality, renal filtration, and systemic hemodynamics were observed. Therefore, both agents have aquaretic efficacy, but the beneficial therapeutic effects of the long-term oral administration of niravoline are more consistent than those of OPC-31260 in cirrhotic rats with ascites and water retention.  (+info)

TGF-beta1 in liver fibrosis: an inducible transgenic mouse model to study liver fibrogenesis. (4/499)

Transforming growth factor-beta1 (TGF-beta1) is a powerful stimulus for collagen formation in vitro. To determine the in vivo effects of TGF-beta1 on liver fibrogenesis, we generated transgenic mice overexpressing a fusion gene [C-reactive protein (CRP)/TGF-beta1] consisting of the cDNA coding for an activated form of TGF-beta1 under the control of the regulatory elements of the inducible human CRP gene promoter. Two transgenic lines were generated with liver-specific overexpression of mature TGF-beta1. After induction of the acute phase response (15 h) with lipopolysaccharide (100 microgram ip), plasma TGF-beta1 levels reached >600 ng/ml in transgenic animals, which is >100 times above normal plasma levels. Basal plasma levels of uninduced transgenic animals were about two to five times above normal. As a consequence of hepatic TGF-beta1 expression, we could demonstrate marked transient upregulation of procollagen I and procollagen III mRNA in the liver 15 h after the peak of TGF-beta1 expression. Liver histology after repeated induction of transgene expression showed an activation of hepatic stellate cells in both transgenic lines. The fibrotic process was characterized by perisinusoidal deposition of collagen in a linear pattern. This transgenic mouse model gives in vivo evidence for the important role of TGF-beta1 in stellate cell activation and liver fibrogenesis. Due to the ability to control the level of TGF-beta1 expression, this model allows the study of the regulation and kinetics of collagen synthesis and fibrolysis as well as the degree of reversibility of liver fibrosis. The CRP/TGF-beta1 transgenic mouse model may finally serve as a model for the testing of antifibrogenic agents.  (+info)

Vascular properties of isoflurane: comparison between normal and cirrhotic rats. (5/499)

Isoflurane is known to dilate blood vessels and to modulate nitric oxide production. Because cirrhosis is characterized by over production of endothelial nitric oxide, isoflurane-induced vasodilatation may be altered in this situation. We have compared the vasodilator effects of isoflurane in normal rats and rats with secondary biliary cirrhosis. Aortic rings (intact or endothelium denuded) from normal and cirrhotic rats were suspended in HEPES solution and preconstricted with KCl 40 mmol litre-1. Isoflurane dose-dependently relaxed vessels in both groups. Maximal relaxation was comparable between normal and cirrhotic rats in intact (mean 80 (SEM 4) vs 81 (6)%; ns) and in denuded (100 (4) vs 95 (5)%; ns) vessels. Intact vessels relaxed more than denuded vessels in both groups (100 (4) vs 80 (4)% (P = 0.0008) in normal rats and 95 (5) vs 80 (6)% (P = 0.0008) in cirrhotic rats). We conclude that cirrhosis did not modify isoflurane-induced vasodilatation and that the modulator effect of endothelium was conserved.  (+info)

Hepatic artery flow and propranolol metabolism in perfused cirrhotic rat liver. (6/499)

The oxygen limitation theory states that capillarization of the sinusoidal endothelium in cirrhosis impairs hepatocellular oxygen uptake manifesting as a reduction in oxygen-dependent enzyme activity including phase 1 drug metabolism. The hepatic artery supplies highly oxygenated blood to the liver. Therefore, we tested whether augmentation of hepatic arterial blood flow could improve hepatic oxygenation and function in cirrhosis. Rats were treated with carbon tetrachloride and phenobarbitone to induce hepatic cirrhosis or fibrosis. We used a bivascular rat liver perfusion model to examine the effects of increased hepatic artery flow on propranolol clearance and oxygen consumption. Each liver was perfused at three hepatic artery flow rates, 1 to 3, 4 to 6, and 7 to 9 ml/min with a constant portal venous flow of 7 to 9 ml/min. Increasing the hepatic artery flow led to improvement in propranolol clearance in control (n = 7, P <.001), fibrotic (n = 8, P <.001), and cirrhotic (n = 6, P <.001) livers. Intrinsic clearance of propranolol increased only in the cirrhotic livers (P =.01), indicating an improvement in enzyme activity. Regression analysis indicated that this improvement was mediated by change in oxygen delivery alone (P =.001). The results confirm that propranolol metabolizing enzyme activity in cirrhosis can be improved by increasing oxygen delivery by increasing hepatic arterial blood flow. These findings suggest that increasing hepatic arterial blood flow may be an important therapeutic strategy for improving global liver function in cirrhosis.  (+info)

Role of Pneumolysin's complement-activating activity during pneumococcal bacteremia in cirrhotic rats. (7/499)

We investigated the role of pneumolysin's complement-activating activity during Streptococcus pneumoniae bacteremia in a hypocomplementemic, cirrhotic host. Isogenic mutant pneumococcal strains, in which pneumolysin was expressed from a plasmid, were used. These strains included H+C+, expressing wild-type pneumolysin with both cytolytic and complement-activating activity; PLY-, carrying the plasmid without the pneumolysin gene; and, H+C-, expressing pneumolysin with cytolytic activity only. In control rats, intravenous infection with 2.0 x 10(7) CFU of H+C+ per ml of blood resulted in a decrease in bacteremia of 3.5 log units by 18 h postinfection and 55% mortality. By contrast, cirrhotic rats infected similarly with the H+C+ strain demonstrated a 0.2-log-unit increase in bacteremia by 18 h postinfection and 100% mortality. Both control and cirrhotic rats cleared the PLY- strain more effectively from their bloodstreams by 18 h postinfection (6.2 and 5. 6 log unit decreases, respectively). Infection with the PLY- strain also resulted in low mortality (0 and 14%, respectively) for control and cirrhotic rats. When infected with the H+C- strain (without complement-activating activity), both groups cleared the organism from their bloodstreams nearly as well as they did the PLY- strain. Furthermore, the mortality rate for control and cirrhotic rats was identical after infection with the H+C- strain. These studies suggest that pneumolysin production contributes to decreased pneumococcal clearance from the bloodstream and higher mortality in both control and cirrhotic rats. However, pneumolysin's complement-activating activity may uniquely enhance pneumococcal virulence in the hypocomplementemic, cirrhotic host.  (+info)

Dihydropyrimidine dehydrogenase activity and fluorouracil pharmacokinetics with liver damage induced by bile duct ligation in rats. (8/499)

Hepatic metabolism is the main determinant in the pharmacokinetics of 5-fluorouracil (5-FU). Its disposition might be affected with liver dysfunction. In the present study, the influence of liver damage induced by bile duct ligation on dihydropyrimidine dehydrogenase (DPD), a rate-limiting enzyme in 5-FU catabolism, CYP2B, and 5-FU pharmacokinetics were compared in male Sprague-Dawley rats. After 3 weeks of the ligation in two different groups of animals for in vitro and pharmacokinetic experiments, significant increases in serum bilirubin level and spleen weight were found in both groups. No significant differences were noted in bilirubin level or spleen weight of the bile duct ligation group between the two experiment groups. In the in vitro experiment, DPD activity and protein levels determined by Western blot analysis in the bile duct ligation group were slightly but significantly greater than those of a sham-operated group, whereas CYP2B activity and protein level were significantly reduced. These findings were supported by mRNA levels of CYP2B and DPD. When 40 mg/kg 5-FU was administered i.v. in the pharmacokinetic experiment, no significant differences in pharmacokinetic parameters were found between the bile duct ligation and sham-operated groups. These results suggested that DPD activity and protein level were maintained and that 5-FU pharmacokinetics was not altered in the presence of liver damage accompanied by a significant reduction in CYP2B activity and protein level, supporting previous clinical studies showing that mild to moderate liver dysfunction does not affect 5-FU disposition.  (+info)