Relation between initial blood distribution volume and propofol induction dose requirement. (57/928)

BACKGROUND: Propofol induction dose is variable and depends on many factors, including initial volume of distribution and early disposition. The authors hypothesized that preadministration blood distribution volumes, cardiac output (CO), and hepatic blood flow (HBF) could be examined to establish a propofol induction dose. METHODS: Propofol dose required to reach loss of consciousness, when infused at infusion rate per lean body mass (LBM) of 40 mg x kg(-1) x h(-1), was determined in 75 patients aged 11-85 yr. CO, blood volume (BV), central blood volume (CBV), and HBF were measured with indocyanine green pulse spectrophotometry. Univariate least squares linear regression analysis was used to individually analyze the relation between propofol induction dose and patient characteristics, including LBM, baseline distribution volumes, CO, and HBF. Stepwise multiple linear regression models were used to select important predictors of induction dose. RESULTS: Although there was a significant correlation between the induction dose and each of the eight variables of age, sex, LBM, hemoglobin, CO, BV, CBV, and HBF, only factors of age (partial r = -0.655), LBM (partial r = 0.325), CBV (partial r = 0.540), and HBF (partial r = 0.357) were independently associated with the induction dose (R2 = 0.85) when all variables were included in a multivariate model. CONCLUSIONS: At a constant propofol infusion rate of 40 mg x kg(-1) x h(-1) as a function of LBM in patients with American Society of Anesthesiologists physical status I or II, the induction dose can be determined from four variables: age, LBM, CBV, and HBF.  (+info)

Hepatic arteriolo-portal venular shunting guarantees maintenance of nutritional microvascular supply in hepatic arterial buffer response of rat livers. (58/928)

To elucidate the hepatic microvascular response upon the hepatic arterial buffer response (HABR), we analysed blood flow (ultrasonic flowprobes) of the hepatic artery (HA) and portal vein (PV), microcirculation (intravital microscopy), and tissue oxygenation (polarography) in anaesthetized Sprague-Dawley rats and re-evaluated the role of adenosine in mediating the HABR by using 8-phenyltheophylline as a competitive antagonist. 2. Upon restriction of PV blood flow to 11 +/- 3 % of baseline values, HA blood flow increased by a factor of 1.77 (P < 0.05), thus confirming HABR. Strikingly, red blood cell velocity and volumetric blood flow in terminal hepatic arterioles (THAs) did not increase but were even found to be slightly decreased, by 8 and 13 %, respectively. In contrast, red blood cell velocity and volumetric blood flow in terminal portal venules (TPVs) decreased to only 66 % (P < 0.05), indicating upstream hepatic arteriolo-portal venular shunting. As a consequence, red blood cell velocity and volumetric blood flow in sinusoids were found to be reduced to only 66-68 % compared with baseline (P < 0.05). Diameters of neither of those microvessels changed, thus excluding THA-, TPV-, and sinusoid-associated mechanisms of vasomotor control in HABR. 3. Tissue PO2 and hepatocellular NADH fluorescence remained unchanged, indicating HABR-mediated maintenance of adequate oxygen delivery, despite the marked reduction of total liver blood flow. Further, hepatic arteriolo-portal venular shunting guaranteed homogeneity of nutritive blood flow upon HABR, as given by an unchanged intra-acinar coefficient of variance of sinusoidal perfusion. 4. Pretreatment of animals with the adenosine antagonist 8-phenyltheophylline completely blocked the hepatic arterial buffer response with the consequence of decreased tissue oxygenation and increased heterogeneity of sinusoidal perfusion. 5. In conclusion, hepatic microhaemodynamics, in particular unchanged diameters of THAs, TPVs and sinusoids, during HABR indicate that reduction in resistance to HA flow is located upstream and functions via hepatic arteriolo-portal venular shunts resulting in equal distribution of microvascular blood flow and oxygen delivery under conditions of restricted PV blood supply.  (+info)

Portal-Systemic shunts reduce asialoglycoprotein receptor density in rats. (59/928)

The clinical usefulness of quantitative functional imaging techniques that use asialoglycoprotein receptor (ASGP-R) binding is based on the correlation between ASGP-R density and hepatic functional reserve. Portal-systemic shunting (PSS) is common in patients with cirrhosis and portal hypertension-the same group that is most frequently considered for such imaging. PSS occurs spontaneously through collateral vessels and from the creation of surgical shunts or placement of transjugular intrahepatic portal-systemic shunts (TIPS). Understanding the physiologic relationship between PSS and ASGP-R activity may aid in the interpretation of quantitative clinical imaging. This study was conducted to determine the relationship between PSS and ASGP-R density in the absence of parenchymal disease. METHODS: Sprague-Dawley rats with end-to-side portal-systemic shunts and sham-operated control rats were imaged with 99mTC-diethylenetriaminepentaacetic acid galactosyl-neoglycoalbumin. Pharmacokinetic modeling of the liver and heart time-activity data was used to measure ASGP-R concentration, as well as hepatic plasma volume and flow. RESULTS: The mean ASGP-R density (nmol/g of liver) was significantly decreased in the shunted rats. Blood ammonia was significantly elevated, whereas hepatic plasma flow, alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase levels were unaltered. Liver histology was normal in both groups. CONCLUSION: A significant change in the ASGP-R density occurs with PSS in the absence of parenchymal disease. PSS appears to be an independent variable affecting ASGP-R activity. This could prove clinically important during interpretation of quantitative imaging from patients with varying degrees of PSS based on underlying disease or the presence of a surgical shunt or TIPS device.  (+info)

Kupffer cell-initiated remote hepatic injury following bilateral hindlimb ischemia is complement dependent. (60/928)

Intravital fluorescence microscopy was applied to the livers of male Wistar rats to test the hypothesis that complement mobilization stimulates Kupffer cells and subsequently initiates hepatic injury after hindlimb ischemia/reperfusion (I/R). Following 3 h of limb reperfusion, hepatocellular viability (serum levels of alanine transaminase and cell death via propidium iodide labeling) decreased significantly from levels in sham-operated animals. Inhibition of complement mobilization with soluble complement receptor type 1 (20 mg/kg body wt) and interruption of Kupffer cell function with GdCl(3) (1 mg/100g body wt) resulted in significant hepatocellular protection. Although the effects of hindlimb I/R on hepatic microvascular perfusion were manifest as increased heterogeneity, both complement inhibition and suppression of Kupffer cell function resulted in marked improvements. No additional hepatocellular protection and microvascular improvements were provided by combining the interventions. Furthermore, inhibition of complement mobilization significantly depressed Kupffer cell phagocytosis by 42% following limb reperfusion. These results suggest that the stimulation of Kupffer cells via complement mobilization is necessary but is not the only factor contributing to the early pathogenesis of hepatic injury following hindlimb I/R.  (+info)

Food deprivation exacerbates mitochondrial oxidative stress in rat liver exposed to ischemia-reperfusion injury. (61/928)

Mitochondria undergo oxidative damage during reperfusion of ischemic liver. Although nutritional status affects ischemia-reperfusion injury in the liver, its effect on mitochondrial damage has not been evaluated. Thus, this study was designed to determine whether starvation influences the oxidative balance in mitochondria isolated from livers exposed to warm ischemia-reperfusion. Fed and 18- and 36-h food-deprived rats underwent partial hepatic ischemia followed by reperfusion. Mitochondria were isolated before and after ischemia and during reperfusion. Serum alanine transaminase was measured to assess liver injury. The mitochondrial concentrations of malondialdehyde, protein carbonyls and glutathione were determined as indicators of oxidative injury. Cell ultrastructure was assessed by transmission electron microscopy. Transaminase levels were greater in 18-h food-deprived than fed rats (after 120 min of reperfusion: 3872 +/- 400 vs. 1138 +/- 59 U/L, P < 0.01). Mitochondrial glutathione was lower in food-deprived than fed rats before and after ischemia, and during reperfusion. Food deprivation also was associated with significantly greater lipid and protein oxidative damage. Finally, more ultrastructural damage was observed during reperfusion in mitochondria from food-deprived rats. Prolonging the length of food deprivation to 36 h exacerbated significantly both the mitochondrial oxidative injury and the release of serum transaminases in rats (after 120 min of reperfusion: 5438 +/- 504 U/L, P < 0.01). Food deprivation was associated with greater mitochondrial oxidative injury in rat livers exposed to warm ischemia-reperfusion, and the extent of oxidative damage in mitochondria increased with the length of food deprivation.  (+info)

Hepatocellular uptake of taurocholate in the dog. (62/928)

The purpose of this study was to examine the hepatocellular extraction of taurocholate and to determine the kinetic characteristics of the uptake process. The uptake of taurocholate by the liver of the intact dog was studied by the multiple-indicator dilution method. 51Cr-labeled red blood cells (a vascular indicator), 125I-labeled albumin (an extravascular reference), and [14C]taurocholate were injected into the portal vein. Different doses of unlabeled taurocholate were included in the injection mixture. Hepatic venous dilution curves were obtained. As a consequence of the hepatic uptake, the outflow recovery of [14C]taurocholate was much reduced when compared to that of albumin, but its recovery increased with increasing doses of taurocholate, suggesting a progressive saturation of the uptake process. The analysis of the dilution curves fitted a three-compartment model system well and no return of the extracted taurocholate to the extracellular space could be detected. The initial space of distribution of taurocholate was 1.22 plus or minus 0.12 (SD) times greater than that of albumin. Analysis of the data for uptake was consistent with Michaelis-Menten kinetics. The calculated initial maximal velocity of uptake (Vmax) was 4.53 mumol times s--1 times 100 g of liver--1 and the dose yielding half-maximal velocity (DK) was 7.11 mumol times 100 g of liver--1. These results are consistent with the hypothesis that the uptake of taurocholate is carrier-mediated. The maximal vilocity of uptake was about six times the known maximal capacity of biliary secretion of taurocholate in the dog.  (+info)

Alpha- and beta-cell responses to small changes in plasma glucose in the conscious dog. (63/928)

The responses of the pancreatic alpha- and beta-cells to small changes in glucose were examined in overnight-fasted conscious dogs. Each study consisted of an equilibration (-140 to -40 min), a control (-40 to 0 min), and a test period (0 to 180 min), during which BAY R3401 (10 mg/kg), a glycogen phosphorylase inhibitor, was administered orally, either alone to create mild hypoglycemia or with peripheral glucose infusion to maintain euglycemia or create mild hyperglycemia. Drug administration in the hypoglycemic group decreased net hepatic glucose output (NHGO) from 8.9 +/- 1.7 (basal) to 6.0 +/- 1.7 and 5.8 +/- 1.0 pmol x kg(-1) x min(-1) by 30 and 90 min. As a result, the arterial plasma glucose level decreased from 5.8 +/- 0.2 (basal) to 5.2 +/- 0.3 and 4.4 +/- 0.3 mmol/l by 30 and 90 min, respectively (P < 0.01). Arterial plasma insulin levels and the hepatic portal-arterial difference in plasma insulin decreased (P < 0.01) from 78 +/- 18 and 90 +/- 24 to 24 +/- 6 and 12 +/- 12 pmol/l over the first 30 min of the test period and decreased to 18 +/- 6 and 0 pmol/l by 90 min, respectively. The arterial glucagon levels and the hepatic portal-arterial difference in plasma glucagon increased from 43 +/- 5 and 4 +/- 2 to 51 +/- 5 and 10 +/- 5 ng/l by 30 min (P < 0.05) and to 79 +/- 16 and 31 +/- 15 ng/l by 90 min (P < 0.05), respectively. In euglycemic dogs, the arterial plasma glucose level remained at 5.9 +/- 0.1 mmol/l, and the NHGO decreased from 10 +/- 0.6 to -3.3 +/- 0.6 pmol x kg(-1) x min(-1) (180 min). The insulin and glucagon levels and the hepatic portal-arterial differences remained constant. In hyperglycemic dogs, the arterial plasma glucose level increased from 5.9 +/- 0.2 to 6.2 +/- 0.2 mmol/l by 30 min, and the NHGO decreased from 10 +/- 1.7 to 0 pmol x kg(-1) x min(-1) by 30 min. The arterial plasma insulin levels and the hepatic portal-arterial difference in plasma insulin increased from 60 +/- 18 and 78 +/- 24 to 126 +/- 30 and 192 +/- 42 pmol/l by 30 min, after which they averaged 138 +/- 24 and 282 +/- 30 pmol/l, respectively. The arterial plasma glucagon levels and the hepatic portal-arterial difference in plasma glucagon decreased slightly from 41 +/- 7 and 4 +/- 3 to 34 +/- 7 and 3 +/- 2 ng/l during the test period. These data show that the alpha- and beta-cells of the pancreas respond as a coupled unit to very small decreases in the plasma glucose level.  (+info)

A high-sucrose diet increases gluconeogenic capacity in isolated periportal and perivenous rat hepatocytes. (64/928)

A high-sucrose (SU) diet increases gluconeogenesis (GNG) in the liver. The present study was conducted to determine the contribution of periportal (PP) and perivenous (PV) cell populations to this SU-induced increase in GNG. Male Sprague-Dawley rats were fed an SU (68% sucrose) or starch (ST, 68% starch) diet for 1 wk, and hepatocytes were isolated from the PP or PV region of the liver acinus. Hepatocytes were incubated for 1 h in the presence of various gluconeogenic substrates, and glucose release into the medium was used to estimate GNG. When incubated in the presence of 5 mM lactate, which enters GNG at the level of pyruvate, glucose release (nmol x h(-1) x mg(-1)) was significantly increased by the SU diet in both PP (84.8 +/- 3.4 vs. 70.4 +/- 2.6) and PV (64.3 +/- 2.5 vs. 38.2 +/- 2.1) cells. Addition of palmitate (0.5 mM) increased glucose release from lactate in PP cells by 11.6 +/- 0.5 and 20.6 +/- 1.5% and in PV cells by 11.0 +/- 4.4 and 51.1 +/- 9.1% in SU and ST, respectively. When cells were incubated with 5 mM dihydroxyacetone (DHA), which enters GNG at the triosephosphate level, glucose release was significantly increased by the SU diet in both cell types. In contrast, glucose release from fructose (0.5 mM) was significantly increased by the SU diet in PV cells only. These changes in glucose release were accompanied by significant increases in the maximal specific activities of glucose-6-phosphatase (G-6-Pase) and phosphoenolpyruvate carboxykinase (PEPCK) in both PP and PV cells. These data suggest that the SU diet influences GNG in both PP and PV cell populations. It appears that SU feeding produces changes in GNG via alterations in at least two critical enzymes, G-6-Pase and PEPCK.  (+info)