Modulation of phosphatidylinositol turnover on central nicotinic receptors. (1/715)

AIM: To study the modulatory effects of phosphatidylinositol (PI) turnover on nicotinic receptors in CNS, and to study the relationship between brain nicotinic receptors and PI turnover. METHODS: Effects of inositol phosphatase inhibitor lithium chloride (LiCl) and muscarinic receptor agonist oxotremorine (Oxo) on nicotine-induced convulsions were investigated in mice. RESULTS: The effects of nicotine for producing convulsions were modified by LiCl 2.5-10, revealing the convulsive effects of nicotine > 0.8 were increased by acute pretreatment with LiCl rather than oxotremorine. Mice were given LiCl 5.0 once a day for 7 d, the ED50 value of nicotine for producing convulsions was increased from 0.58 to 0.97, suggesting that the sensitivity of central nicotinic receptors for mediating convulsions was decreased by chronic treatment with LiCl. CONCLUSION: The functions of central nicotinic receptors were modulated by PI turnover.  (+info)

Effects of lithium on pigmentation in the embryonic zebrafish (Brachydanio rerio). (2/715)

Pigment cell precursors of the embryonic zebrafish give rise to melanophores, xanthophores and/or iridophores. Cell signaling mechanisms related to the development of pigmentation remain obscure. In order to examine the mechanisms involved in pigment cell signaling, we treated zebrafish embryos with various activators and inhibitors of signaling pathways. Among those chemicals tested, LiCl and LiCl/forskolin had a stimulatory effect on pigmentation, most notable in the melanophore population. We propose that the inositol phosphate (IP) pathway, is involved in pigment pattern formation in zebrafish through its involvement in the: (1) differentiation/proliferation of melanophores; (2) dispersion of melanosomes; and/or (3) synthesis/deposition of melanin. To discern at what level pigmentation was being effected we: (1) counted the number of melanophores in control and experimental animals 5 days after treatment; (2) measured tyrosinase activity and melanin content; and (3) employed immunoblotting techniques with anti-tyrosine-related protein-2 and anti-melanocyte-specific gene-1 as melanophore-specific markers. Although gross pigmentation increased dramatically in LiCl- and LiCl/forskolin treated embryos, the effect on pigmentation was not due to an increase in the proliferation of melanophores, but was possibly through an increase in melanin synthesis and/or deposition. Collectively, results from these studies suggest the involvement of an IP-signaling pathway in the stimulation of pigmentation in embryonic zebrafish through the synthesis/deposition of melanin within the neural crest-derived melanophores.  (+info)

Rapid, labile, and protein synthesis-independent short-term memory in conditioned taste aversion. (3/715)

Short-term memory is a rapid, labile, and protein-synthesis-independent phase of memory. The existence of short-term memory in conditioned taste aversion (CTA) learning has not been demonstrated formally. To determine the earliest time at which a CTA is expressed, we measured intraoral intake of sucrose at 15 min, 1 hr, 6 hr, or 48 h after contingent pairing of an intraoral infusion of 5% sucrose (6.6 ml over 6 min) and toxic lithium chloride injection (76 mg/kg). Rats were implanted with intraoral catheters to allow presentation of taste solutions at arbitrary times. Intraoral intake was measured under conditions of long-delay, single-trial learning typical of CTA. Rats decreased intraoral intake of sucrose at 15 min after contingent pairing of sucrose and LiCl, but not after noncontingent LiCl or sucrose. Thus CTA learning can be expressed rapidly. To determine if short-term CTA memory is labile and decays in the absence of long-term memory, we measured intraoral intake of sucrose after pairing sucrose with low doses of LiCl. Rats received an intraoral infusion of 5% sucrose (6 ml/6 min); 30 min later LiCl was injected at three different doses (19, 38, or 76 mg/kg). A second intraoral infusion of sucrose was administered 15 min, 1 hr, 3 hr, 4.5 hr, 6 hr, or 48 hr later. The formation of long-term CTA memory was dependent on the dose of LiCl paired with sucrose during acquisition. Low doses of LiCl induced a CTA that decayed within 6 hr after pairing. Central administration of the protein synthesis inhibitor cycloheximide prior to LiCl injection blocked long-term CTA expression at 6 and 48 hr, but not short-term CTA expression at 1 hr. Thus, short-term memory for CTA learning exists that is acquired rapidly and independent of protein synthesis, but labile in the absence of long-term memory formation.  (+info)

Nuclear beta-catenin and the development of bilateral symmetry in normal and LiCl-exposed chick embryos. (4/715)

Studies in Xenopus laevis and zebrafish suggest a key role for beta-catenin in the specification of the axis of bilateral symmetry. In these organisms, nuclear beta-catenin demarcates the dorsalizing centers. We have asked whether beta-catenin plays a comparable role in the chick embryo and how it is adapted to the particular developmental constraints of chick development. The first nuclear localization of beta-catenin is observed in late intrauterine stages of development in the periphery of the blastoderm, the developing area opaca and marginal zone. Obviously, this early, radially symmetric domain does not predict the future organizing center of the embryo. During further development, cells containing nuclear beta-catenin spread under the epiblast and form the secondary hypoblast. The onset of hypoblast formation thus demarcates the first bilateral symmetry in nuclear beta-catenin distribution. Lithium chloride exposure also causes ectopic nuclear localization of beta-catenin in cells of the epiblast in the area pellucida. Embryos treated before primitive streak formation become completely radialized, as shown by the expression of molecular markers, CMIX and GSC. Lithium treatments performed during early or medium streak stages cause excessive development of the anterior primitive streak, node and notochord, and lead to a degeneration of prospective ventral and posterior structures, as shown by the expression of the molecular markers GSC, CNOT1, BMP2 and Ch-Tbx6L. In summary, we found that in spite of remarkable spatiotemporal differences, beta-catenin acts in the chick in a manner similar to that in fish and amphibia.  (+info)

Orbitofrontal cortex and representation of incentive value in associative learning. (5/715)

Clinical evidence indicates that damage to ventromedial prefrontal cortex disrupts goal-directed actions that are guided by motivational and emotional factors. As a consequence, patients with such damage characteristically engage in maladaptive behaviors. Other research has shown that neurons in the corresponding orbital region of prefrontal cortex in laboratory animals encode information regarding the incentive properties of goals or expected events. The present study investigates the effect of neurotoxic orbitofrontal cortex (OFC) lesions in the rat on responses that are normally influenced by associations between a conditioned stimulus (CS) and the incentive value of reinforcement. Rats were first trained to associate a visual CS with delivery of food pellets to a food cup. As a consequence of learning, rats approached the food cup during the CS in anticipation of reinforcement. In a second training phase, injection of LiCl followed consumption of the food unconditioned stimulus (US) in the home cage, a procedure used to alter the incentive value of the US. Subsequently, rats were returned to the conditioning chamber, and their responding to the CS in the absence of the food US was tested. Lesions of OFC did not affect either the initial acquisition of a conditioned response to the light CS in the first training phase or taste aversion learning in the second training phase. In the test for devaluation, however, OFC rats exhibited no change in conditioned responding to the visual CS. This outcome contrasts with the behavior of control rats; after devaluation of the US a significant decrease occurred in approach to the food cup during presentation of the CS. The results reveal an inability of a cue to access representational information about the incentive value of associated reinforcement after OFC damage.  (+info)

Bombesin-like peptides depolarize rat hippocampal interneurones through interaction with subtype 2 bombesin receptors. (6/715)

1. Whole-cell patch-clamp recordings were made from visually identified hippocampal interneurones in slices of rat brain tissue in vitro. Bath application of the bombesin-like neuropeptides gastrin-releasing peptide (GRP) or neuromedin B (NMB) produced a large membrane depolarization that was blocked by pre-incubation with the subtype 2 bombesin (BB2) receptor antagonist [D-Phe6, Des-Met14]bombesin-(6-14)ethyl amide. 2. The inward current elicited by NMB or GRP was unaffected by K+ channel blockade with external Ba2+ or by replacement of potassium gluconate in the electrode solution with caesium acetate. 3. Replacement of external NaCl with Tris-HCl significantly reduced the magnitude of the GRP-induced current at -60 mV. In contrast, replacement of external NaCl with LiCl had no effect on the magnitude of this current. 4. Photorelease of caged GTPgammaS inside neurones irreversibly potentiated the GRP-induced current at -60 mV. Similarly, bath application of the phospholipase C (PLC) inhibitor U-73122 significantly reduced the size of the inward current induced by GRP. 5. Reverse transcription followed by the polymerase chain reaction using cytoplasm from single hippocampal interneurones demonstrated the expression of BB2 receptor mRNA together with glutamate decarboxylase (GAD67). 6. Although bath application of GRP or NMB had little or no effect on the resting membrane properties of CA1 pyramidal cells per se, these neuropeptides produced a dramatic increase in the number and amplitude of miniature inhibitory postsynaptic currents in these cells in a TTX-sensitive manner.  (+info)

Interoceptive stress activates glucagon-like peptide-1 neurons that project to the hypothalamus. (7/715)

This study tested the hypothesis that systemic stressors in rats activate glucagon-like peptide-1 (GLP-1)-immunoreactive neurons in the caudal brain stem, including those that project to the paraventricular nucleus of the hypothalamus (PVN). Neural tracer was microinjected into the PVN to retrogradely label brain stem neurons. Seven to ten days later, rats were injected with lithium chloride (LiCl; 50 mg/kg). Additional non-tracer-injected rats were treated with lipopolysaccharide (LPS; 100 microgram/kg) or CCK (100 microgram/kg) or were allowed to consume a very large meal. Rats were killed 90-120 min after drug treatment or 30 min after the meal. Brains were processed for immunocytochemical localization of c-Fos (a marker of neuronal activation), GLP-1, and, when appropriate, neural tracer. The majority of GLP-1 neurons were activated to express c-Fos after LiCl, LPS, or CCK treatment, including (in LiCl-treated rats) those projecting to the PVN. In contrast, GLP-1 neurons rarely expressed c-Fos after ingestion of a large meal, despite prominent activation of other brain stem neurons. These results suggest that GLP-1 neurons are uniquely activated in situations of interoceptive stress, and may participate in adaptive hypothalamic stress responses.  (+info)

Patterning of the mesoderm involves several threshold responses to BMP-4 and Xwnt-8. (8/715)

Two secreted signaling molecules, Xwnt-8 and BMP-4, play an essential role in the dorso-ventral patterning of the mesoderm in Xenopus. Here we investigate how the Wnt-8 and the BMP-4 pathways are connected and how they regulate target genes in the lateral and ventral marginal zone. BMP-4 regulates the transcription of Xwnt-8 in a threshold dependent manner. High levels of BMP-4 induce the expression of the Wnt antagonist sizzled in the ventral marginal zone, independent of Xwnt-8 signaling. Xwnt-8 induces the early muscle marker myf-5 in the lateral marginal zone in a BMP independent manner. The expression of the homeobox gene Xvent-1 can be modulated through both the BMP-4 and the Xwnt-8 pathways. The spatial distribution and the level of BMP-4 activity in the lateral and ventral marginal zone is reflected in the dynamic expression pattern of Xwnt-8. The data support the view that Xwnt-8 is involved in the specification of lateral (somitogenic) mesoderm and BMP-4 in the specification of ventral mesoderm.  (+info)