Modulation of rat preadipocyte adipose conversion by androgenic status: involvement of C/EBPs transcription factors. (9/1971)

Androgenic status affects rat preadipocyte adipose conversion from two deep intra-abdominal (epididymal and perirenal) fat depots differently. The aim of this study was to establish whether these site-specific alterations of adipogenesis are related to altered expressions of the transcriptional factors regulating proliferation and differentiation of preadipocytes, c-myc and CCAAT/enhancer binding proteins (C/EBPs: C/EBPalpha and beta). The increased proliferation of epididymal and perirenal preadipocytes from castrated rats was not linked to variations in c-myc mRNA and protein levels. The expression of the early marker of adipogenesis, lipoprotein lipase (LPL), was decreased by androgenic deprivation in epididymal cells but remained insensitive to the androgenic status in perirenal preadipocytes. In contrast, LPL expression increased in subcutaneous preadipocytes from castrated rats, an effect which was partly corrected by testosterone treatment. Expression of C/EBPbeta was unaffected by androgenic status whatever the anatomical origin of the preadipocytes. In contrast, the mRNA and protein levels of C/EBPalpha were greatly decreased by androgenic deprivation in epididymal cells, an alteration which could not be corrected by in vivo testosterone administration. Altogether these results demonstrated that in preadipocytes androgenic deprivation affects site-specifically the expression of LPL, an early marker of adipogenesis and of C/EBPalpha, a master regulator of adipogenesis. These observations contribute to an explanation of why castration induces defective adipose conversion in rat epididymal preadipocytes specifically.  (+info)

Overexpression of human apolipoprotein A-II in mice induces hypertriglyceridemia due to defective very low density lipoprotein hydrolysis. (10/1971)

Two lines of transgenic mice, hAIItg-delta and hAIItg-lambda, expressing human apolipoprotein (apo)A-II at 2 and 4 times the normal concentration, respectively, displayed on standard chow postprandial chylomicronemia, large quantities of very low density lipoprotein (VLDL) and low density lipoprotein (LDL) but greatly reduced high density lipoprotein (HDL). Hypertriglyceridemia may result from increased VLDL production, decreased VLDL catabolism, or both. Post-Triton VLDL production was comparable in transgenic and control mice. Postheparin lipoprotein lipase (LPL) and hepatic lipase activities decreased at most by 30% in transgenic mice, whereas adipose tissue and muscle LPL activities were unaffected, indicating normal LPL synthesis. However, VLDL-triglyceride hydrolysis by exogenous LPL was considerably slower in transgenic compared with control mice, with the apparent Vmax of the reaction decreasing proportionately to human apoA-II expression. Human apoA-II was present in appreciable amounts in the VLDL of transgenic mice, which also carried apoC-II. The addition of purified apoA-II in postheparin plasma from control mice induced a dose-dependent decrease in LPL and hepatic lipase activities. In conclusion, overexpression of human apoA-II in transgenic mice induced the proatherogenic lipoprotein profile of low plasma HDL and postprandial hypertriglyceridemia because of decreased VLDL catabolism by LPL.  (+info)

Plasma clearance and liver uptake of chylomicron remnants generated by hepatic lipase lipolysis: evidence for a lactoferrin-sensitive and apolipoprotein E-independent pathway. (11/1971)

Chylomicrons labeled with [3H]cholesterol and [14C]triglyceride fatty acids were lipolyzed by hepatic lipase (HL) in vitro and then injected intravenously into normal mice fed low- or high-fat diets, and into apolipoprotein (apo) E-deficient mice. In normal mice fed the high-fat diet and injected with non-lipolyzed chylomicrons, the plasma clearance and hepatic uptake of the resulting [3H]cholesterol-labeled remnants was markedly inhibited. In contrast, chylomicrons lipolyzed by HL were taken up equally rapidly by the livers of mice fed the low- and high-fat diets. The removal of non-lipolyzed chylomicrons lacking apoE from the plasma of apoE-deficient mice was inhibited, but not the removal of chylomicrons lipolyzed by HL. Pre-injection of lactoferrin into normal mice inhibited the plasma clearance of both non-lipolyzed chylomicrons and chylomicrons lipolyzed by HL. The removal of HL from the surface of the lipolyzed particles by proteolytic digestion did not affect their rapid uptake, indicating that the hepatic recognition of the lipoproteins was not mediated by HL. These observations support previous findings that phospholipolysis of chylomicrons by hepatic lipase generates remnant particles that are rapidly cleared from circulation by the liver. They also support the concept that chylomicron remnants can be taken up by the liver by an apolipoprotein E-independent mechanism. We hypothesize that this mechanism is modulated by the remnant phospholipids and that it may involve their interaction with a phospholipid-binding receptor on the surface of hepatocytes such as the class B scavenger receptor BI.  (+info)

Effect of troglitazone on plasma lipid metabolism and lipoprotein lipase. (12/1971)

AIMS: To clarify how troglitazone, an insulin-sensitizing agent, affects lipid metabolism and postheparin plasma lipoprotein lipase (LPL). METHODS: Fifteen patients (3 male, 12 female) (the average age 62+/-7 years; the mean body mass index (BMI) 25+/-3 kg/m2 ) were recruited for this study. The serum lipids and postheparin plasma lipoprotein lipase (LPL) mass before and 4 weeks after oral administration of troglitazone (200 mg day-1 ) were measured. A mouse preadipocyte cell line, 3T3-L1, was incubated with troglitazone and LPL enzyme protein mass in the culture media was measured by an enzyme linked immunosorbent assay. A reverse transcription polymerase chain reaction (RT-PCR) using primers specific for the carboxyl terminal 135 amino acid of mouse LPL cDNA was used to evaluate the effect of troglitazone on expression of LPL and Northern blot analysis carried out to determine expression of LPL. RESULTS: The average levels before treatment of fasting serum total cholesterol, triglycerides, high density lipoprotein cholesterol, plasma glucose and glycohaemoglobin A1c were 5.6+/-0.9, 1.8+/-1.0, 1.5+/-0.5, 8.1+/-1.7 mmol l-1 and 7.8+/-1.6% respectively. Four weeks after treatment, those levels were 5.4+/-0.9, 1.2+/-0.3 (P=0.004), 1.6+/-0.5 (P=0.02) mmol l-1, 7.7+/-2.3 mmol l-1 and 7. 3+/-0.6% (P=0.01), respectively. The postheparin plasma LPL mass increased from 226+/-39 to 257+/-68 ng ml-1 (P=0.03) during that period. The LPL mass in the media of 3T3 L1 cells cultured in the presence of 10, 20 or 30 microm of this compound increased in a dose dependent manner. RT-PCR revealed that the area of the bands of the RT-PCR products on 1.5% agarose gel analyzed with NIH image from the cell extracts cultured in the presence of 10 microm troglitazone was significantly larger (P=0.0069) than that in the absence of this compound. Northern blot analysis revealed that in the cultured 3T3-L1 cells, the expression of LPL was enhanced in the presence of 10 microm troglitazone. CONCLUSIONS: Troglitazone improves plasma triglyceride-rich lipoproteins metabolism by enhancing the expression of LPL in adipocytes.  (+info)

Beneficial effects of fibrates on apolipoprotein A-I metabolism occur independently of any peroxisome proliferative response. (13/1971)

BACKGROUND: In humans, fibrates are frequently used normolipidemic drugs. Fibrates act by regulating genes involved in lipoprotein metabolism via activation of the peroxisome proliferator-activated receptor-alpha (PPARalpha) in liver. In rodents, however, fibrates induce a peroxisome proliferation, leading to hepatomegaly and possibly hepatocarcinogenesis. Although this peroxisome proliferative response appears not to occur in humans, it remains controversial whether the beneficial effects of fibrates on lipoprotein metabolism can occur dissociated from such undesirable peroxisomal response. Here, we assessed the influence of fenofibrate on lipoprotein metabolism and peroxisome proliferation in the rabbit, an animal that, contrary to rodents and similar to humans, is less sensitive to peroxisome proliferators. METHODS AND RESULTS: First, we demonstrate that in normal rabbits, fenofibrate given at a high dose for 2 weeks does not influence serum concentrations or intestinal mRNA levels of the HDL apolipoprotein apoA-I. Therefore, the study was continued with human apoA-I transgenic rabbits that overexpress the human apoA-I gene under control of its homologous promoter, including its PPAR-response elements. In these animals, fenofibrate increases serum human apoA-I concentrations via an increased expression of the human apoA-I gene in liver. Interestingly, liver weight or mRNA levels and activity of fatty acyl-CoA oxidase, a rate-limiting and marker enzyme of peroxisomal beta-oxidation, remain unchanged after fenofibrate. CONCLUSIONS: Expression of the human apoA-I transgene in rabbit liver suffices to confer fibrate-mediated induction of serum apoA-I. Furthermore, these data provide in vivo evidence that the beneficial effects of fibrates on lipoprotein metabolism occur mechanistically dissociated from any deleterious activity on peroxisome proliferation and possibly hepatocarcinogenesis.  (+info)

Modification of type III VLDL, their remnants, and VLDL from ApoE-knockout mice by p-hydroxyphenylacetaldehyde, a product of myeloperoxidase activity, causes marked cholesteryl ester accumulation in macrophages. (14/1971)

Very low density lipoproteins (VLDLs) from apolipoprotein (apo) E2/E2 subjects with type III hyperlipoproteinemia, VLDL remnants, and VLDL from apoE-knockout (EKO) mice are taken up poorly by macrophages. The present study examined whether VLDL modification by the reactive aldehyde p-hydroxyphenylacetaldehyde (pHA) enhances cholesteryl ester (CE) accumulation by J774A.1 macrophages. pHA is the major product derived from the oxidation of L-tyrosine by myeloperoxidase and is a component of human atherosclerotic lesions. Incubation of J774A.1 cells with native type III VLDL, their remnants, and EKO-VLDL increased cellular CE by only 3-, 5-, and 5-fold, respectively, compared with controls. In striking contrast, cells exposed to VLDL modified by purified pHA (pHA-VLDL) exhibited marked increases in cellular CE of 38-, 47-, and 35-fold, respectively (P95%, CE accumulation induced by copper-oxidized VLDL. These results demonstrate a novel mechanism for the conversion of type III VLDLs, their remnants, and EKO-VLDL into atherogenic particles and suggest that macrophage uptake of pHA-VLDL (1) requires catalytically active lipoprotein lipase, (2) involves acyl coenzyme A:cholesterol acyltransferase-mediated cholesterol esterification, and (3) involves pathways distinct from the SR-A.  (+info)

Metabolic adjustments during daily torpor in the Djungarian hamster. (15/1971)

Djungarian hamsters (Phodopus sungorus) acclimated to a short photoperiod (8:16-h light-dark cycle) display spontaneous daily torpor with ad libitum food availability. The time course of body temperature (Tb), metabolic rate, respiratory quotient (RQ), and substrate and enzyme changes was measured during entrance into torpor and in deep torpor. RQ, blood glucose, and serum lipids are high during the first hours of torpor but then gradually decline, suggesting that glucose is the primary fuel during the first hours of torpor, with a gradual change to lipid utilization. No major changes in enzyme activities were observed during torpor except for inactivation of the pyruvate dehydrogenase (PDH) complex in liver, brown adipose tissue, and heart muscle. PDH inactivation closely correlates with the reduction of total metabolic rate, whereas in brain, kidney, diaphragm, and skeletal muscle, PDH activity was maintained at the initial level. These findings suggest inhibition of carbohydrate oxidation in heart, brown adipose tissue, and liver during entrance into daily torpor.  (+info)

Insulin and dexamethasone stimulation of cardiac lipoprotein lipase activity involves the actin-based cytoskeleton. (16/1971)

Lipoprotein lipase (LPL) activity in cultured ventricular cardiomyocytes from adult rat hearts was stimulated by the combination of insulin (100 nM) and dexamethasone (100 nM) during an overnight (16 h) incubation. Wortmannin (100 nM), rapamycin (30 ng/ml) or PD98059 (50 microM) did not prevent this stimulation, suggesting that phosphatidylinositol 3-kinase, p70 S6 kinase and the mitogen-activated protein kinase cascade are not involved in transducing the hormonal signal. In contrast, cytochalasin D (2 microM) completely abolished the stimulatory effect of insulin and dexamethasone on both heparin-releasable LPL and total cellular LPL activities. The potential role of the actin cytoskeleton in the stimulation of LPL activity by insulin and dexamethasone appears to be distal to the initial signalling events since cytochalasin D is still effective in preventing the stimulation when added 2 h after the hormones.  (+info)