Carbohydrate-induced hypertriacylglycerolemia: historical perspective and review of biological mechanisms. (65/1971)

Current trends in health promotion emphasize the importance of reducing dietary fat intake. However, as dietary fat is reduced, the dietary carbohydrate content typically rises and the desired reduction in plasma cholesterol concentrations is frequently accompanied by an elevation of plasma triacylglycerol. We review the phenomenon of carbohydrate-induced hypertriacylglycerolemia, the health effects of which are among the most controversial and important issues in public health nutrition today. We first focus on how seminal observations made in the late 1950s and early 1960s became the basis for subsequent important research questions and areas of scientific study. The second focus of this paper is on the current knowledge of biological mechanisms that contribute to carbohydrate-induced hypertriacylglycerolemia. The clinical rationale behind mechanistic studies is this: if carbohydrate-induced hypertriacylglycerolemia shares a metabolic basis with endogenous hypertriacylglycerolemia (that observed in subjects consuming high-fat diets), then a similar atherogenic risk may be more likely than if the underlying metabolic mechanisms differ. The third focus of the paper is on both the positive metabolic changes that occur when high-carbohydrate diets are consumed and the potentially negative health effects of such diets. The review concludes with a summary of some important research questions that remain to be addressed. These issues include the level of dietary carbohydrate that induces carbohydrate-induced hypertriacylglycerolemia, whether the phenomenon is transient or can be avoided, whether de novo lipogenesis contributes to the phenomenon, and what magnitude of triacylglycerol elevation represents an increase in disease risk.  (+info)

Nutritional regulation of binding sites for lipoprotein lipase in rat heart. (66/1971)

Several laboratories have shown that when rats are fasted, the amount of lipoprotein lipase (LPL) at the vascular endothelium in heart (monitored as the amount released by heparin) increases severalfold without corresponding changes in the production of LPL. This suggests that there is a change in endothelial binding of LPL. To study this, (125)I-labeled bovine LPL was injected. The fraction that bound in the heart was more than twice as high in fasted than in fed rats, 4.3% compared with 1.9% of the injected dose. Refeeding reversed this in 5 h. When unlabeled LPL was injected before the tracer, the fraction of (125)I-LPL that bound in heart decreased, indicating that the binding was saturable. When isolated hearts were perfused at 4 degrees C with a single pass of labeled LPL, twice as much bound in hearts of fasted rats. We conclude that fasting causes a change in the vascular endothelium in heart such that its ability to bind LPL increases.  (+info)

A coalescent approach to study linkage disequilibrium between single-nucleotide polymorphisms. (67/1971)

We present the results of extensive simulations that emulate the development and distribution of linkage disequilibrium (LD) between single-nucleotide polymorphisms (SNPs) and a gene locus that is phenotypically stratified into two classes (disease phenotype and wild-type phenotype). Our approach, based on coalescence theory, allows an explicit modeling of the demographic history of the population without conditioning on the age of the mutation, and serves as an efficient tool to carry out simulations. More specifically, we compare the influence that a constant population size or an exponentially growing population has on the amount of LD. These results indicate that attempts to locate single disease genes are most likely successful in small and constant populations. On the other hand, if we consider an exponentially growing population that started to expand from an initially constant population of reasonable size, then our simulations indicate a lower success rate. The power to detect association is enhanced if haplotypes constructed from several SNPs are used as markers. The versatility of the coalescence approach also allows the analysis of other relevant factors that influence the chances that a disease gene will be located. We show that several alleles leading to the same disease have no substantial influence on the amount of LD, as long as the differences between the disease-causing alleles are confined to the same region of the gene locus and as long as each allele occurs in an appreciable frequency. Our simulations indicate that mapping of less-frequent diseases is more likely to be successful. Moreover, we show that successful attempts to map complex diseases depend crucially on the phenotype-genotype correlations of all alleles at the disease locus. An analysis of lipoprotein lipase data indicates that our simulations capture the major features of LD occurring in biological data.  (+info)

Adrenal and liver in normal and cld/cld mice synthesize and secrete hepatic lipase, but the lipase is inactive in cld/cld mice. (68/1971)

Combined lipase deficiency (cld) is a recessive mutation in mice that causes a severe lack of lipoprotein lipase (LPL) and hepatic lipase (HL) activities, hyperlipemia, and death within 3 days after birth. Earlier studies showed that inactive LPL and HL were synthesized by cld/cld tissues and that LPL synthesized by cld/cld brown adipocytes was retained in their ER. We report here a study of HL in liver, adrenal, and plasma of normal newborn and cld/cld mice. Immunofluorescence studies showed HL was present in extracellular space, but not in cells, in liver and adrenal of both normal and cld/cld mice. When protein secretion was blocked with monensin, HL was retained intracellularly in liver cell cultures and in incubated adrenal tissues of both groups of mice. These findings demonstrated that HL was synthesized and secreted by liver and adrenal cells in normal newborn and cld/cld mice. HL activities in liver, adrenal, and plasma in cld/cld mice were very low, <8% of that in normal newborn mice, indicating that HL synthesized and secreted by cld/cld cells was inactive. Livers of both normal newborn and cld/cld mice synthesized LPL, but the level of LPL activity in cld/cld liver was very low, <9% of that in normal liver. Immunofluorescence studies showed that LPL was present intracellularly in liver of cld/cld mice, indicating that LPL was synthesized but not secreted by cld/cld liver cells. Immunofluorescent LPL was not found in normal newborn liver cells unless the cells were treated with monensin, thus demonstrating that normal liver cells synthesized and secreted LPL. Livers of both groups of mice contained an unidentified alkaline lipase activity which accounted for 34-54% of alkaline lipase activity in normal and 65% of that in cld/cld livers. Our findings indicate that liver and adrenal cells synthesized and secreted HL in both normal newborn and cld/cld mice, but the lipase was inactive in cld/cld mice. That cld/cld liver cells secreted inactive HL while retaining inactive LPL indicates that these closely related lipases were processed differently.  (+info)

PLTP activity in premenopausal women. Relationship with lipoprotein lipase, HDL, LDL, body fat, and insulin resistance. (69/1971)

Plasma phospholipid transfer protein (PLTP) is thought to play a major role in the facilitated transfer of phospholipids between lipoproteins and in the modulation of high density lipoprotein (HDL) particle size and composition. However, little has been reported concerning the relationships of PLTP with plasma lipoprotein parameters, lipolytic enzymes, body fat distribution, insulin, and glucose in normolipidemic individuals, particularly females. In the present study, 50 normolipidemic healthy premenopausal females were investigated. The relationships between the plasma PLTP activity and selected variables were assessed. PLTP activity was significantly and positively correlated with low density lipoprotein (LDL) cholesterol (r(s) = 0.53), apoB (r(s) = 0.44), glucose (r(s) = 0.40), HDL cholesterol (r(s) = 0.38), HDL(3) cholesterol (r(s) = 0.37), lipoprotein lipase activity (r(s) = 0.36), insulin (r(s) = 0.33), subcutaneous abdominal fat (r(s) = 0.36), intra-abdominal fat (r(s) = 0.29), and body mass index (r(s) = 0.29). HDL(2) cholesterol, triglyceride, and hepatic lipase were not significantly related to PLTP activity. As HDL(2) can be decreased by hepatic lipase and hepatic lipase is increased in obesity with increasing intra-abdominal fat, the participants were divided into sub-groups of non-obese (n = 35) and obese (n = 15) individuals and the correlation of PLTP with HDL(2) cholesterol was re-examined. In the non-obese subjects, HDL(2) cholesterol was found to be significantly and positively related to PLTP activity (r(s) = 0.44). Adjustment of the HDL(2) values for the effect of hepatic lipase activity resulted in a significant positive correlation between PLTP and HDL(2) (r(s) = 0.41), indicating that the strength of the relationship between PLTP activity and HDL(2) can be reduced by the opposing effect of hepatic lipase on HDL(2) concentrations. We conclude that PLTP-facilitated lipid transfer activity is related to HDL and LDL metabolism, as well as lipoprotein lipase activity, adiposity, and insulin resistance.  (+info)

Binding of hepatic lipase to heparin. Identification of specific heparin-binding residues in two distinct positive charge clusters. (70/1971)

The interaction of hepatic lipase (HL) with heparan sulfate is critical to the function of this enzyme. The primary amino acid sequence of HL was compared to that of lipoprotein lipase (LPL), a related enzyme that possesses several putative heparin-binding domains. Of the three putative heparin-binding clusters of LPL (J. Biol. Chem. 1994. 269: 4626-4633; J. Lipid Res. 1998. 39: 1310-1315), one was conserved in HL (Cluster 1; residues Lys 297-Arg 300 in rat HL) and two were partially conserved (Cluster 2; residues Asp 307-Phe 320, and Cluster 4; residues Lys 337, and Thr 432-Arg 443). Mutants of HL were generated in which potential heparin-binding residues within Clusters 1 and 4 were changed to Asn. Two chimeras in which the LPL heparin-binding sequences of Clusters 2 and 4 were substituted for the analogous HL sequences were also constructed. These mutants were expressed in Chinese hamster ovary (CHO) cells and assayed for heparin-binding ability using heparin-Sepharose chromatography and a CHO cell-binding assay. The results suggest that residues within the homologous Cluster 1 region (Lys 297, Lys 298, and Arg 300), as well as some residues in the partially conserved Cluster 4 region (Lys 337, Lys 436, and Arg 443), are involved in the heparin binding of hepatic lipase. In the cell-binding assay, heparan sulfate-binding affinity equal to that of LPL was seen for the RHL chimera mutant that possessed the Cluster 4 sequence of LPL. Mutation of Cluster 1 residues of HL resulted in a major reduction in heparin binding ability as seen in both the cell-binding assay and the heparin-Sepharose elution profile. These results suggest that Cluster 1, the N-terminal heparin-binding domain, is of primary significance in RHL. This is different for LPL: mutations in the C-terminal binding domain (Cluster 4) cause a more significant shift in the salt required for elution from heparin-Sepharose than mutations in the N-terminal domain (Cluster 1).  (+info)

Lipoprotein lipase (LPL) strongly links native and oxidized low density lipoprotein particles to decorin-coated collagen. Roles for both dimeric and monomeric forms of LPL. (71/1971)

Low density lipoprotein (LDL) and oxidized LDL are associated with collagen in the arterial intima, where the collagen is coated by the small proteoglycan decorin. When incubated in physiological ionic conditions, decorin-coated collagen bound only small amounts of native and oxidized LDL, the interaction being weak. When decorin-coated collagen was first allowed to bind lipoprotein lipase (LPL), binding of native and oxidized LDL increased dramatically (23- and 7-fold, respectively). This increase depended on strong interactions between LPL that was bound to the glycosaminoglycan chains of the collagen-bound decorin and native and oxidized LDL (kDa 12 and 5.9 nM, respectively). To distinguish between binding to monomeric (inactive) and dimeric (catalytically active) forms of LPL, affinity chromatography on heparin columns was conducted, which showed that native LDL bound to the monomeric LPL, whereas oxidized LDL, irrespective of the type of modification (Cu(2+), 2, 2'-azobis(2-amidinopropane)hydrochloride, hypochlorite, or soybean 15-lipoxygenase), bound preferably to dimeric LPL. However, catalytic activity of LPL was not required for binding to oxidized LDL. Finally, immunohistochemistry of atherosclerotic lesions of human coronary arteries revealed specific areas in which LDL, LPL, decorin, and collagen type I were present. The results suggest that LPL can retain LDL in atherosclerotic lesions along decorin-coated collagen fibers.  (+info)

Ovine adipose tissue monounsaturated fat content is correlated to depot-specific expression of the stearoyl-CoA desaturase gene. (72/1971)

The basis for the variation in fatty acid composition in different ovine adipose tissue depots was investigated. The proportion of stearic (C18:0) and oleic (C18:1) acids vary in a site-specific fashion; abdominal depots (omental and perirenal) contain relatively more C18:0 than C18:1, and carcass depots, especially sternum, have a markedly higher proportion of C18:1. Additionally, expression of a number of lipogenic enzyme genes (stearoyl-CoA desaturase [SCD], acetyl-CoA carboxylase-alpha [ACC-alpha], lipoprotein lipase [LPL]) and the cytoskeletal protein gene alpha-tubulin vary among depots, although the pattern of variation differs for each mRNA. When these expression data were related to the mean cell volume of adipocytes pooled from all depots, a significant pattern emerged: expression of the ACC-alpha, LPL, and alpha-tubulin genes was highly correlated with the size of adipocytes. In contrast, when the expression of SCD mRNA was assessed as a function of mean cell volume, two populations of adipocytes emerged: no significant correlation was found between the expression of SCD mRNA per adipocyte and mean cell volume for the abdominal depots, although a highly significant correlation was observed between SCD gene expression and mean cell volume for the carcass and epicardial depots. Similarly, a highly significant correlation was found for the amount of C18:1 per adipocyte and the abundance of SCD mRNA per adipocyte for the carcass and epicardial depots, whereas no significant correlation was observed for these traits for the omental and perirenal depots. Thus, the SCD gene seems to be regulated in a depot-specific fashion and in a manner distinct from that of the ACC and LPL genes.  (+info)