Oxidative stress markers in preovulatory follicular fluid in humans. (17/1192)

Intensified peroxidation in the Graafian follicle may be a factor compromising the normal development of the oocyte. The aim of this study was to measure concentrations of three oxidative stress markers: conjugated dienes, lipid hydroperoxides and thiobarbituric acid-reactive substances, in preovulatory follicular fluids and sera of 145 women attending an in-vitro fertilization programme, and to correlate these concentrations with pregnancy outcome. Determinations were conducted either with or without an antioxidant (10 microM butylated hydroxytoluene) and an iron chelate (10 microM deferoxamine mesylate) to examine peroxidation associated with the methods used. Concentrations of conjugated dienes, lipid hydroperoxides and thiobarbituric acid-reactive substances in follicular fluid were all significantly lower than those in serum, both in the presence or absence of the antioxidant and iron chelate. These concentrations did not correlate with pregnancy outcome. In conclusion, the intensity of peroxidation in the Graafian follicle is much lower than that in serum. This gradient is the result of the lower rate of initiation of peroxidation in the follicular fluid, suggestive of the presence of efficient antioxidant defence systems in the direct milieu of the oocyte before ovulation. The concentrations of investigated oxidative stress markers in follicular fluid do not reflect the reproductive potential of oocytes.  (+info)

Oxidation of LDL in baboons is increased by alcohol and attenuated by polyenylphosphatidylcholine. (18/1192)

Alcohol taken in moderation may prevent atherosclerosis, whereas heavy drinking has the opposite effect, in part by promoting oxidation of low density lipoproteins (LDL), a pathogenetic factor in atherogenesis. We assess here: 1 ) whether similar alterations can be reproduced in baboons fed 50% of energy as ethanol (the average intake of alcoholics) for 7- 8 years, and 2 ) whether such alterations are affected by supplementation with polyenylphosphatidylcholine (PPC), a mixture of polyunsaturated phosphatidylcholines, shown to prevent alcoholic fatty liver, fibrosis, and cirrhosis. Ten animals were given the ethanol-containing diet and ten were pair-fed isocaloric control diets. In half of the pairs, the diets were supplemented with 2.8 g of polyenylphosphatidylcholine/1000 kcal. Alcohol feeding increased LDL-lipoperoxides and made LDL-proteins more negatively charged, changes that were attenuated or prevented by PPC. The oxidizability of LDL was determined in vitro by the formation of conjugated dienes after oxidation with copper. Alcohol shortened the lag time (which measures LDL antioxidant capacity); this effect was normalized by PPC supplementation. By contrast, PPC produced no changes in the controls. Thus polyenylphosphatidylcholine, by markedly attenuating the ethanol-induced increase in LDL oxidation, opposes one of the effects whereby alcohol promotes atherosclerosis.  (+info)

Generation of active oxygen species from advanced glycation end-products (AGEs) during ultraviolet light A (UVA) irradiation and a possible mechanism for cell damaging. (19/1192)

Advanced glycation end-products (AGEs) have been reported to be accumulated in dermal skin. However, the role of AGEs in the photoaging of human skin remains unknown, and for this reason, we have examined the interaction between AGEs and ultraviolet A light (UVA) from both the chemical and biological aspects. Previously, we reported that exposing human dermal fibroblasts to UVA in the presence of AGEs that were prepared with bovine serum albumin (BSA) decreased the cell viability due to superoxide anion radical s (.O2(-)) and hydroxyl radicals (.OH) generated by AGEs under UVA irradiation, and active oxygen species are detected with ESR spin-trapping. To identify the active oxygen species in detail and to clarify the cell damaging mechanism, we performed several experiments and the following results were obtained. (1) In ESR spin-trapping, by addition of dimethyl sulfoxide and superoxide dismutase, ESR signals due to .O2(-) -derived DMPO-OOH and .OH-derived DMPO-OH adducts, respectively, were detectable. (2) UVA-irradiated AGEs elevated the lipid peroxide levels in both fibroblasts and liposomes. But the peroxidation in liposomes was inhibited by addition of deferoxamine. (3) Survival of fibroblasts exposed to UVA in the presence of AGEs was elevated by addition of deferoxamine. And finally, (4) survival of fibroblasts was found to be regulated by the level of H2O2. On the basis of these results, we propose a possible mechanism in which AGEs under UVA irradiation generate active oxygen species involving .O2(-), H2O2, and .OH, and the .OH species plays a harmful role in promoting cell damage.  (+info)

Intrathymic and intrasplenic oxidative stress mediates thymocyte and splenocyte damage in acutely exercised mice. (20/1192)

Reactive oxygen species may contribute to apoptosis in lymphoid tissues observed after exercise. Thymic and splenic tissues excised from control mice (C) or mice immediately after (t0) or 24 h after (t24) a run to exhaustion (RTE) were assayed for biochemical indexes of oxidative stress [thymic and splenic membrane lipid peroxides, superoxide dismutase, catalase, plasma uric acid (UA), and ascorbic acid (AA)]. There were significant increases in membrane lipid peroxides in thymus (P < 0.001) and spleen (P < 0.001) in acutely exercised mice relative to controls (thymus: C = 2.74 +/- 0.80 microM; t0 = 7.45 +/- 0.48 microM; t24 = 9.44 +/-1.41 microM; spleen: C = 0.48 +/- 0.22 microM; t0 = 1.78 +/- 0.28 microM; t24 = 2. 81 +/- 0.34 microM). The thymic and splenic tissue antioxidant enzymes concentrations of superoxide dismutase and catalase were significantly lower in samples collected at t0 relative to C and t24 mice (P < 0.001). Plasma UA and AA levels were used to assess the impact of the RTE on the peripheral antioxidant pool. There was no significant change in UA levels and a significant reduction in plasma AA concentrations (P < 0.001); the reduction in plasma AA occurred at t24 (6.53 +/- 1.64 microM) relative to t0 (13.11 +/- 0. 71 microM) and C (13.26 +/- 1.2 microM). These results suggest that oxidative damage occurs in lymphoid tissues after RTE exercise and that such damage may contribute to lymphocyte damage observed after acute exercise.  (+info)

Formation of the aldehydic choline glycerophospholipids in human red blood cell membrane peroxidized with an azo initiator. (21/1192)

The production of phospholipid hydroperoxide and aldehydic phospholipid was examined in human red blood cell (RBC) membranes after peroxidation with 2,2-azobis(2-amidinopropane)dihydrochloride (AAPH) or xanthine/xanthine oxidase (XO/XOD/Fe3+). Both radical-generation systems caused a profound decrease in the amount of polyunsaturated fatty acid (PUFA) in choline glycerophospholipid (CGP) and induced formation of peroxidized CGP in RBC membranes to different extents. No consistent generation of peroxidized lipids from CGP was evident after peroxidation with XO/XOD/Fe3+, which caused the apparent decomposition of phospholipids and the formation of large amounts of thiobarbituric acid-reactive substance (TBARS). On the other hand, CGP hydroperoxide was formed as a primary product of peroxidation with AAPH. Aldehydic CGP was also detected as a secondary product of hydroperoxide decomposition in AAPH-peroxidized RBC membranes. Aldehydic CGP was preferentially generated from arachidonoyl CGP rather than from linoleoyl CGP in AAPH-peroxidized membranes. AAPH mainly oxidized CGP to hydroperoxide and aldehydic phospholipids. The sum of hydroperoxide and aldehyde of CGP corresponded to the loss of CGP due to peroxidation by AAPH. This result indicates that CGP was mainly converted into these two oxidized phospholipids in AAPH-peroxidized RBC membranes.  (+info)

Formation of Nepsilon-(hexanonyl)lysine in protein exposed to lipid hydroperoxide. A plausible marker for lipid hydroperoxide-derived protein modification. (22/1192)

The objectives of this study were to estimate the structure of the lipid hydroperoxide-modified lysine residue and to prove the presence of the adducts in vivo. The reaction of lipid hydroperoxide toward the lysine moiety was investigated employing N-benzoyl-glycyl-L-lysine (Bz-Gly-Lys) as a model compound of Lys residues in protein and 13-hydroperoxyoctadecadienoic acid (13-HPODE) as a model of the lipid hydroperoxides. One of the products, compound X, was isolated from the reaction mixture of 13-HPODE and Bz-Gly-Lys and was then identified as N-benzoyl-glycyl-Nepsilon-(hexanonyl)lysine. To prove the formation of Nepsilon-(hexanonyl)lysine, named HEL, in protein exposed to the lipid hydroperoxide, the antibody to the synthetic hexanonyl protein was prepared and then characterized in detail. Using the anti-HEL antibody, the presence of HEL in the lipid hydroperoxide-modified proteins and oxidized LDL was confirmed. Furthermore, the positive staining by anti-HEL antibody was observed in human atherosclerotic lesions using an immunohistochemical technique. The amide-type adduct may be a useful marker for the lipid hydroperoxide-derived modification of biomolecules.  (+info)

Phospholipid hydroperoxides are substrates for non-selenium glutathione peroxidase. (23/1192)

This study investigated phospholipid hydroperoxides as substrates for non-selenium GSH peroxidase (NSGPx), an enzyme also called 1-Cys peroxiredoxin. Recombinant human NSGPx expressed in Escherichia coli from a human cDNA clone (HA0683) showed GSH peroxidase activity with sn-2-linolenoyl- or sn-2-arachidonoyl-phosphatidylcholine hydroperoxides as substrate; NADPH or thioredoxin could not substitute for GSH. Activity did not saturate with GSH, and kinetics were compatible with a ping-pong mechanism; kinetic constants (mM(-1) min(-1)) were k(1) = 1-3 x 10(5) and k(2) = 4-11 x 10(4). In the presence of 0.36 mM GSH, apparent K(m) was 120-130 microM and apparent V(max) was 1.5-1.6 micromol/min/mg of protein. Assays with H(2)O(2) and organic hydroperoxides as substrate indicated activity similar to that with phospholipid hydroperoxides. Maximal enzymatic activity was at pH 7-8. Activity with phospholipid hydroperoxide substrate was inhibited noncompetitively by mercaptosuccinate with K(i) 4 miroM. The enzyme had no GSH S-transferase activity. Bovine cDNA encoding NSGPx, isolated from a lung expression library using a polymerase chain reaction probe, showed >95% similarity to previously published human, rat, and mouse sequences and does not contain the TGA stop codon, which is translated as selenocysteine in selenium-containing peroxidases. The molecular mass of bovine NSGPx deduced from the cDNA is 25,047 Da. These results identify a new GSH peroxidase that is not a selenoenzyme and can reduce phospholipid hydroperoxides. Thus, this enzyme may be an important component of cellular antioxidant defense systems.  (+info)

Inhibition of nuclear factor-kappaB activation reduces cortical tubulointerstitial injury in proteinuric rats. (24/1192)

BACKGROUND: Protein-induced chemokine expression in proximal tubular cells is mediated by the transcription factor nuclear factor-kappa B (NF-kappaB). We hypothesized that in vivo inhibition of renal NF-kappaB activation would reduce interstitial monocyte infiltration in a rat model of nonimmune proteinuric tubulointerstitial inflammation. METHODS: Male Wistar rats received a single intravenous injection of doxorubicin hydrochloride [adriamycin (ADR), 7.5 mg/kg] and were studied 7, 14, 21, and 28 days later. In a second study, inhibitors of NF-kappaB [N-acetylcysteine (NAC; 150 mg/kg, b.i.d., i.p.), pyrrolidine dithiocarbamate (PDTC, 50 mg/kg, b. i.d., i.p.)] or vehicle were commenced on day 14 after the onset of proteinuria and were continued until day 30. RESULTS: Rats injected with ADR had increased proteinuria (UpV, day 28, 474 +/- 57; control, 18 +/- 2 mg/day; P < 0.01) and cortical tubulointerstitial injury [tubule cell atrophy, interstitial volume, and monocyte/macrophage (ED-1) infiltration]. Electrophoretic mobility shift assay of nuclear extracts from whole cortex of ADR rats demonstrated that NF-kappaB activation (p50/65, p50/c-Rel) increased from day 7 (4.7 +/- 0.2 fold-increase above control; P < 0.01) was maximal at day 28 (6.2 +/- 0.7; P < 0.01) and correlated with UpV (r = 0.63; P < 0.05) and interstitial ED-1 infiltration (r = 0.67; P < 0.01). Chronic treatment of ADR rats with PDTC suppressed NF-kappaB activation (by 73%; P < 0.05) without any effect on UpV. NF-kappaB inhibition with PDTC was accompanied by a reduction in tubule cell atrophy (59%; P < 0.01), interstitial volume (49%; P < 0.05) and ED-1 infiltration (48%; P < 0.01), and cortical lipid peroxidation (41%; P < 0.05) compared with vehicle-treated ADR rats. In contrast NAC had no effect on NF-kappaB activation, tubulointerstitial injury, or UpV in ADR rats. CONCLUSION: The activation of NF-kappaB may have an important role in mediating cortical interstitial monocyte infiltration and tubular injury in nonimmune proteinuric tubulointerstitial inflammation.  (+info)