Neuromyotonia: an unusual presentation of intrathoracic malignancy. (33/10418)

A 48 year old woman is described who presented with increasing muscular rigidity and who was found to have a mediastinal tumour. Electrophysiological studies revealed that the muscular stiffness resulted from very high frequency motor unit activity which outlasted voluntary effort, and which was abolished by nerve block. The abnormal activity may have arisen at the anterior horn cell level. Marked improvement followed the administration of diphenylhydantoin.  (+info)

Weakness associated with the pathological presence of lipid in skeletal muscle: a detailed study of a patient with carnitine deficiencey. (34/10418)

A patient with muscular weakness demonstrating pathological lipid accumulation and abnormal mitochondria in skeletal muscle has been studied. The lipid accumulation and mitochondrial changes are thought to be related to the established deficiency of carnitine in this patient's muscle. The symptoms of muscular weakness associated with lipid accumulation in the skeletal muscle in the absence of complaint of muscle cramps or myglobinuria are thought to be diagnostic of carnitine deficiency. The failure of the sarcoplasmic reticulum to accumulate Ca2+ is discussed. The patient's strength responded dramatically when propranolol was added to his steroid therapy.  (+info)

Total plasmalogens and O-(acylalkylglycerophosphoryl) ethanolamine from labelled hexadecanol and palmitate during hypoxia and anoxia in rat heart. (35/10418)

By the use of the Langendorff technique, surviving isolated rat hearts were perfused with [1-14 C] palmitate, [1-14C] hexadecanol or [1-14C,1-3H] hexadecanol under normal or anoxic conditions. After perfusion for 30min with either precursor, when oxygenated or in an hypoxic condition, or when 1mM-KCN was included in the system, the heart tissues showed no significant chemical changes in their content of total lipids, total phospholipids or total ethanolamine-containing phospholipids. Changes were observed in the ratio of alkyl-to alk-1-enyl-glycerophosphorylethanolamine in the tissue perfused with N2+CO1 plus CN-. A slight increase from 4.0+/-0.3 to 4.9+/-0.2% in alkyl derivatives and a decrease from 11.2+/-0.4 to 9.4+/-0.3% in alk-1-enyl derivatives was observed. The incorporation of the [14C] palmitate and the [14C] hexadecanol into the recovered phospholipids and plasmalogens was severely decreased in the tissues perfused with CN-: in the hypoxic state only a mild inhibition was observed compared with the oxygenated systems. Considerable 3H from [1-14C, 1-3H] hexadecanol was retained (25-35%) in the alk-1-enylether chains of plasmalogens under both the oxygenated conditions and with CN-, suggesting that the same mechanism of incorporation is operational at high or low O2 concentrations. The results are consistent with an O2-dependent, CN-sensitive step in the biosynthesis of plasmalogens in the rat heart.  (+info)

Paraquat toxicity: proposed mechanism of action involving lipid peroxidation. (36/10418)

The purpose of this study was to investigate the hypothesis that paraquat pulmonary toxicity results from cyclic reduction-oxidation of paraquat with sequential generation of superoxide radicals and singlet oxygen and initiation of lipid peroxidation. In vitro mouse lung microsomes catalyzed an NADPH-dependent, single-electron reduction of paraquat. Incubation of paraquat with NADPH, NADPH-cytochrome c reductase, and purified microsomal lipid increased malondialdehyde production is a concentration dependent manner. Addition of either superoxide dismutase or a single oxygen trapping agent 1,3-dipheylisobenzo furan inhibited paraquat stimulated lipid peroxidation. In vivo, pretreatment of mice with phenobarbital decreased paraquat toxicity, possibly by competing for electrons which might otherwise reduce paraquat. In contrast, paraquat toxicity in mice was increased by exposure to 100% oxygen and by deficiencies of the antioxidants selenium, vitamin E, or reduced glutahione (GSH). Paraquat, given IP to mice, at 30 mg/kg, decreased concentrations of the water-soluble antioxidant GSH in liver and lipid soluble antioxidants in lung. Oxygen-tolerant rats, which hae increased activities of pulmonary enzymes which combat lipid peroxidation, were also tolerant to lethal doses of paraquat as indicated by an increased paraquat LT50. Furthermore, rats chronically exposed to 100 ppm paraquat in the water had elevated pulmonary activities of glucose-6-phosphate dehydrogenase and GSH reductase. These results were consistent with the hypothesis that lipid peroxidation is involved in the toxicity of paraquat.  (+info)

13-(S)-hydroxyoctadecadienoic acid (13-HODE) incorporation and conversion to novel products by endothelial cells. (37/10418)

13(S)-Hydroxy-[12,13-3H]octadecadienoic acid (13-HODE), a linoleic acid oxidation product that has vasoactive properties, was rapidly taken up by bovine aortic endothelial cells. Most of the 13-HODE was incorporated into phosphatidylcholine, and 80% was present in the sn -2 position. The amount of 13-HODE retained in the cells gradually decreased, and radiolabeled metabolites with shorter reverse-phase high-performance liquid chromatography retention times (RT) than 13-HODE accumulated in the extracellular fluid. The three major metabolites were identified by gas chromatography combined with mass spectrometry as 11-hydroxyhexadecadienoic acid (11-OH-16:2), 9-hydroxytetradecadienoic acid (9-OH-14:2), and 7-hydroxydodecadienoic acid (7-OH-12:2). Most of the radioactivity contained in the cell lipids remained as 13-HODE. However, some 11-OH-16:2 and several unidentified products with longer RT than 13-HODE were detected in the cell lipids. Normal human skin fibroblasts also converted 13-HODE to the three major chain-shortened metabolites, but Zellweger syndrome fibroblasts produced only a very small amount of 11-OH-16:2. Therefore, the chain-shortened products probably are formed primarily by peroxisomal beta-oxidation. These findings suggest that peroxisomal beta-oxidation may constitute a mechanism for the inactivation and removal of 13-HODE from the vascular wall. Because this is a gradual process, some 13-HODE that is initially incorporated remains in endothelial phospholipids, especially phosphatidylcholine. This may be the cause of some of the functional perturbations produced by 13-HODE in the vascular wall.  (+info)

Effect of gemfibrozil in vitro on fat-mobilizing lipolysis in human adipose tissue. (38/10418)

Fat-mobilizing lipolysis was studied in rat and human adipose tissue during incubation in vitro by following the release of glycerol into the incubation medium. Gemfibrozil as well as clofibrate consistently and readily inhibited basal as well as noradrenaline-stimulated fat-mobilizing lipolysis in rat fat. With human adipose tissue no effect was observed with gemfibrozil and clofibrate on basal lipolysis. This may be due to the comparatively low rate of the nonstimulated fat-mobilizing lipolysis in human tissue incubated in vitro. When lipolysis was stimulated with noradrenaline as well as isoprenaline, however, both gemfibrozil and clofibrate significantly reduced the fat-mobilizing lipolysis. This inhibition of lipolysis was however not observed in all studies. When lipolysis had been stimulated with theophylline, no inhibition of lipolysis was obtained with either compound. The possibility that reduced fat-mobilizing lipolysis in adipose tissue may cause a lowering of plasma triglycerides by reducing the flow of FFA to the liver is discussed in some detail. It is also suggested that inhibition of lipolysis may be accompanied by increased activity of lipoprotein lipase as well as an increase in the FIAT process. However, the pharmacological implication of the above-mentioned findings, particularly for gemfibrozil, must await further studies, as fairly large doses, around 1 mg/ml of incubation medium, were needed to obtain inhibition of fat-mobilizing lipolysis.  (+info)

Ultrastructure of early lipid accumulation in ApoE-deficient mice. (39/10418)

Apolipoprotein (apo) E-deficient mice develop severe hypercholesterolemia and have lesions that progress from fatty streaks to fibrous plaques distributed in lesion-prone areas throughout the aorta. Lesions develop in apoE-deficient mice on a regular chow diet and will occur faster on a diet higher in cholesterol. Examination of the aortas from these mice on a chow diet by high-resolution, freeze-etch electron microscopy demonstrated lipid retention in the intima by 3 weeks of age. Lipid was retained in the matrix as individual particles between 33 and 48 nm in diameter, aligned along the collagen fibrils and in aggregates consisting of lipid particles with average diameters of 33 and 68 nm. Larger particles seemed to have formed from fusion of smaller particles. Lipid retention was more widespread in 5- and 9-week-old mice. Monocyte attachment to endothelial cells was observed by electron microscopy at 5 weeks of age. The appearance of the intimal lipid was similar to that previously described in rabbit models and suggests that lipid interaction with matrix filaments and subsequent aggregation of lipid particles are critical first steps in the process of foam cell formation.  (+info)

ApoB100 secretion from HepG2 cells is decreased by the ACAT inhibitor CI-1011: an effect associated with enhanced intracellular degradation of ApoB. (40/10418)

The concept that hepatic cholesteryl ester (CE) mass and the rate of cholesterol esterification regulate hepatocyte assembly and secretion of apoB-containing lipoproteins remains controversial. The present study was carried out in HepG2 cells to correlate the rate of cholesterol esterification and CE mass with apoB secretion by CI-1011, an acyl CoA:cholesterol acyltransferase (ACAT) inhibitor that is known to decrease apoB secretion, in vivo, in miniature pigs. HepG2 cells were incubated with CI-1011 (10 nmol/L, 1 micromol/L, and 10 micromol/L) for 24 hours. ApoB secretion into media was decreased by 25%, 27%, and 43%, respectively (P<0.0012). CI-1011 (10 micromol/L) inhibited HepG2 cell ACAT activity by 79% (P<0.002) and cellular CE mass by 32% (P<0.05). In contrast, another ACAT inhibitor, DuP 128 (10 micromol/L), decreased cellular ACAT activity and CE mass by 85% (P<0.002) and 42% (P=0.01), respectively, but had no effect on apoB secretion into media. To characterize the reduction in apoB secretion by CI-1011, pulse-chase experiments were performed and analyzed by multicompartmental modelling using SAAM II. CI-1011 did not affect the synthesis of apoB or albumin. However, apoB secretion into the media was decreased by 42% (P=0.019). Intracellular apoB degradation increased proportionately (P=0.019). The secretion of albumin and cellular reuptake of labeled lipoproteins were unchanged. CI-1011 and DuP 128 did not affect apoB mRNA concentrations. These results show that CI-1011 decreases apoB secretion by a mechanism that involves an enhanced intracellular degradation of apoB. This study demonstrates that ACAT inhibitors can exert differential effects on apoB secretion from HepG2 cells that do not reflect their efficacy in inhibiting cholesterol esterification.  (+info)