A solvent model for simulations of peptides in bilayers. II. Membrane-spanning alpha-helices. (57/7162)

We describe application of the implicit solvation model (see the first paper of this series), to Monte Carlo simulations of several peptides in bilayer- and water-mimetic environments, and in vacuum. The membrane-bound peptides chosen were transmembrane segments A and B of bacteriorhodopsin, the hydrophobic segment of surfactant lipoprotein, and magainin2. Their conformations in membrane-like media are known from the experiments. Also, molecular dynamics study of surfactant lipoprotein with different explicit solvents has been reported (Kovacs, H., A. E. Mark, J. Johansson, and W. F. van Gunsteren. 1995. J. Mol. Biol. 247:808-822). The principal goal of this work is to compare the results obtained in the framework of our solvation model with available experimental and computational data. The findings could be summarized as follows: 1) structural and energetic properties of studied molecules strongly depend on the solvent; membrane-mimetic media significantly promote formation of alpha-helices capable of traversing the bilayer, whereas a polar environment destabilizes alpha-helical conformation via reduction of solvent-exposed surface area and packing; 2) the structures calculated in a membrane-like environment agree with the experimental ones; 3) noticeable differences in conformation of surfactant lipoprotein assessed via Monte Carlo simulation with implicit solvent (this work) and molecular dynamics in explicit solvent were observed; 4) in vacuo simulations do not correctly reproduce protein-membrane interactions, and hence should be avoided in modeling membrane proteins.  (+info)

Molecular dynamics simulation of DPPC bilayer in DMSO. (58/7162)

We performed molecular dynamics simulations on dipalmitoylphosphatidylcholine (DPPC)/dimethylsulfoxide (DMSO) system that has the same lipid:solvent weight ratio as in our previous simulation done on DPPC/water. We did not observe a large change in the size of DPPC membrane when the solvent was changed from water to DMSO. Also, we did not observe that a large number of DMSO molecules is permeating into the membrane, as it was suggested to explain the observed change in the bilayer repeat period. We found that the surface potential reverses its sign when water is replaced by DMSO. Based on the results from our simulations, we propose that the repulsion force acting between membranes is reduced when DMSO is added to solvent water and therefore membrane surfaces approach closer to each other and the extra solvent is removed into excess solution.  (+info)

Analysis of simulated NMR order parameters for lipid bilayer structure determination. (59/7162)

The conventional formula for relating CD2 average order parameters to average methylenic travel is flawed when compared to molecular dynamics simulations of dipalmitoylphosphatidylcholine. Inspired by the simulated probability distribution functions, a new formula is derived that satisfactorily relates these quantities. This formula is used to obtain the average chain length , and the result agrees with the direct simulation result for . The simulation also yields a hydrocarbon thickness 2. The result = is consistent with a model of chain packing with both early chain termination and partial interdigitation of chains from opposing monolayers. The actual simulated area per lipid is easily obtained from the order parameters. However, when this method is applied to NMR order parameter data from dimyristoylphosphatidylcholine, the resulting is 10% larger than the currently accepted value.  (+info)

A fluorescence energy transfer method for analyzing protein oligomeric structure: application to phospholamban. (60/7162)

We have developed a method using fluorescence energy transfer (FET) to analyze protein oligomeric structure. Two populations of a protein are labeled with fluorescent donor and acceptor, respectively, then mixed at a defined donor/acceptor ratio. A theoretical simulation, assuming random mixing and association among protein subunits in a ring-shaped homo-oligomer, was used to determine the dependence of FET on the number of subunits, the distance between labeled sites on different subunits, and the fraction of subunits remaining monomeric. By measuring FET as a function of the donor/acceptor ratio, the above parameters of the oligomeric structure can be resolved over a substantial range of their values. We used this approach to investigate the oligomeric structure of phospholamban (PLB), a 52-amino acid protein in cardiac sarcoplasmic reticulum (SR). Phosphorylation of PLB regulates the SR Ca-ATPase. Because PLB exists primarily as a homopentamer on sodium dodecyl sulfate polyacrylamide gel electrophoresis, it has been proposed that the pentameric structure of PLB is important for its regulatory function. However, this hypothesis must be tested by determining directly the oligomeric structure of PLB in the lipid membrane. To accomplish this goal, PLB was labeled at Lys-3 in the cytoplasmic domain, with two different amine-reactive donor/acceptor pairs, which gave very similar FET results. In detergent solutions, FET was not observed unless the sample was first boiled to facilitate subunit mixing. In lipid bilayers, FET was observed at 25 degrees C without boiling, indicating a dynamic equilibrium among PLB subunits in the membrane. Analysis of the FET data indicated that the dye-labeled PLB is predominantly in oligomers having at least 8 subunits, that 7-23% of the PLB subunits are monomeric, and that the distance between dyes on adjacent PLB subunits is about 10 A. A point mutation of PLB (L37A) that runs as monomer on SDS-PAGE showed no energy transfer, confirming its monomeric state in the membrane. We conclude that FET is a powerful approach for analyzing the oligomeric structure of PLB, and this method is applicable to other oligomeric proteins.  (+info)

Effect of cationic lipids in the formation of asymmetries in supported bilayers. (61/7162)

We have studied the formation of a supported bilayer containing both cationic and zwitterionic lipids by fusion of small unilamellar vesicles (SUV) onto the solid surface at low salt conditions using a combination of attenuated total reflection infrared (ATR-IR) and deuterium NMR spectroscopy with microcalorimetry. The data suggest that a significant cationic lipid asymmetry between the outer (distal) and the inner (proximal) monolayer of a supported bilayer results under conditions of prolonged incubation times of the solid support with the SUV coating solution. For a SUV composition of DPPC/DHDAB (4:1) we observed an enrichment of the cationic component in the proximal monolayer of up to 200% compared to the distal monolayer after 12 h incubation. It is suggested that the electrostatic potential arising from the solid surface is the driving force for the creation of this asymmetry by means of directed flip-flop between the monolayers and/or by temporary fusion between SUV from the bulk with the supported bilayer.  (+info)

A "release" protocol for isothermal titration calorimetry. (62/7162)

Isothermal titration calorimetry (ITC) has become a standard method for investigating the binding of ligands to receptor molecules or the partitioning of solutes between water and lipid vesicles. Accordingly, solutes are mixed with membranes (or ligands with receptors), and the subsequent heats of incorporation (or binding) are measured. In this paper we derive a general formula for modeling ITC titration heats in both binding and partitioning systems that allows for the modeling of the classic incorporation or binding protocols, as well as of new protocols assessing the release of solute from previously solute-loaded vesicles (or the dissociation of ligand/receptor complexes) upon dilution. One major advantage of a simultaneous application of the incorporation/binding and release protocols is that it allows for the determination of whether a ligand is able to access the vesicle interior within the time scale of the ITC experiment. This information cannot be obtained from a classical partitioning experiment, but it must be known to determine the partition coefficient (or binding constant and stochiometry) and the transfer enthalpy. The approach is presented using the partitioning of the nonionic detergent C12EO7 to palmitoyloleoylphosphatidylcholine vesicles. The release protocol could also be advantageous in the case of receptors that are more stable in the ligand-saturated rather than the ligand-depleted state.  (+info)

Lipid composition and the lateral pressure profile in bilayers. (63/7162)

The mechanisms by which variations in the lipid composition of cell membranes influence the function of membrane proteins are not yet well understood. In recent work, a nonlocal thermodynamic mechanism was suggested in which changes in lipid composition cause a redistribution of lateral pressures that in turn modulates protein conformational (or aggregation) equilibria. In the present study, results of statistical thermodynamic calculations of the equilibrium pressure profile and bilayer thickness are reported for a range of lipids and lipid mixtures. Large redistributions of lateral pressure are predicted to accompany variation in chain length, degree and position of chain unsaturation, head group repulsion, and incorporation of cholesterol and interfacially active solutes. Combinations of compositional changes are found that compensate with respect to bilayer thickness, thus eliminating effects of hydrophobic mismatch, while still effecting significant shifts of the pressure profile. It is also predicted that the effect on the pressure profile of addition of short alkanols can be reproduced with certain unnatural lipids. These results suggest possible roles of cholesterol, highly unsaturated fatty acids and small solutes in modulating membrane protein function and suggest unambiguous experimental tests of the pressure profile hypothesis. As a test of the methodology, calculated molecular areas and area elastic moduli are compared with experimental and simulation results.  (+info)

A new principle for rapid immunoassay of proteins based on in situ precipitate-enhanced ellipsometry. (64/7162)

A new technique is presented that allows measurement of protein concentrations in the picomolar range with an assay time of only 10-20 min. The method is an enzyme-linked immunosorbent assay (ELISA), but uses in-situ ellipsometric measurement of a precipitating enzyme product instead of the usual colorimetric detection of accumulating enzyme product in solution. Quantitative validation was obtained by use of annexin V, a protein with high binding affinity for phosphatidylserine-containing phospholipid membranes, resulting in a transport-limited adsorption rate. This property was exploited to obtain a range of low surface concentrations of annexin V by timed exposures of phospholipid bilayers to known concentrations of annexin V. Using polyvinylchloride (PVC)-coated and silanized silicon slides, various versions of this technique were used for the rapid assay of fatty acid-binding protein (FABP), a recently introduced early marker for acute myocardial infarction with a normal plasma concentration below 1 nmol/l, interleukin 6 (IL-6), a cytokine with normal plasma concentrations below 1 pmol/l, and again, annexin V. A possible future application of the method in the development of a one-step ELISA is discussed.  (+info)