Loading...
(1/221) Nuclear export of LIM-kinase 1, mediated by two leucine-rich nuclear-export signals within the PDZ domain.

LIM-kinase 1 (LIMK1) is a serine/threonine kinase that phosphorylates cofilin and regulates actin-filament dynamics. LIMK1, which contains two LIM domains and a single PDZ domain, localizes predominantly in the cytoplasm, but its mutant, deleted with the PDZ domain, localizes mainly in the nucleus, thereby indicating that the PDZ domain plays a role in the cytoplasmic localization of LIMK1. Here we provide evidence that the PDZ domain of LIMK1 contains two functional leucine-rich nuclear-export signals (NESs). The PDZ domain of LIMK1 fused with glutathione S-transferase (GST-PDZ), when injected into the nucleus, was rapidly excluded from the nucleus, but its mutant with replacements of conserved hydrophobic residues in two putative NESs by alanines remained in the nucleus. The nuclear export of GST-PDZ was sensitive to leptomycin B (LMB), a specific inhibitor of nuclear export mediated by leucine-rich NESs. Malfunctional mutation of two NESs or LMB treatment prevented the nuclear export of full-length LIMK1 and induced its nuclear accumulation. These results suggest that the predominant localization of LIMK1 in the cytoplasm is supported by two NESs within the PDZ domain and that LIMK1 normally shuttles between the cytoplasm and the nucleus. We also provide evidence that a short basic cluster sequence within the protein-kinase domain is involved in the nuclear import of LIMK1.  (+info)

(2/221) Structural features of LIM kinase that control effects on the actin cytoskeleton.

LIM kinase phosphorylates and inactivates the actin binding/depolymerizing factor cofilin and induces actin cytoskeletal changes. Several unique structural features within LIM kinase were investigated for their roles in regulation of LIM kinase activity. Disruption of the second LIM domain or the PDZ domain or deletion of the entire amino terminus increased activity in vivo measured as increasing aggregation of the actin cytoskeleton. A kinase-deleted alternate splice product was identified and characterized. This alternate splice product and a kinase inactive mutant inhibited LIM kinase in vivo, indicating that the amino terminus suppresses activity of the kinase domain. Mutation of threonine 508 in the activation loop to valine abolished activity whereas replacement with 2 glutamic acid residues resulted in a fully active enzyme. Dephosphorylation of LIM kinase inhibited cofilin phosphorylation. Mutation of the basic insert in the activation loop inhibited activity in vivo, but not in vitro. These results indicate phosphorylation is an essential regulatory feature of LIM kinase and indicate that threonine 508 and the adjacent basic insert sequences of the activation loop are required for this process. A combination of structural features are thus involved in receiving upstream signals that regulate LIM kinase-induced actin cytoskeletal reorganization.  (+info)

(3/221) Signal-regulated activation of serum response factor is mediated by changes in actin dynamics.

Serum response factor (SRF) regulates transcription of many serum-inducible and muscle-specific genes. Using a functional screen, we identified LIM kinase-1 as a potent activator of SRF. We show that SRF activation by LIM kinase-1 is dependent on its ability to regulate actin treadmilling. LIM kinase activity is not essential for SRF activation by serum, but signals depend on alterations in actin dynamics. Studies with actin-binding drugs, the actin-specific C2 toxin, and actin overexpression demonstrate that G-actin level controls SRF. Regulation of actin dynamics is necessary for serum induction of a subset of SRF target genes, including vinculin, cytoskeletal actin, and srf itself, and also suffices for their activation. Actin treadmilling provides a convergence point for both serum- and LIM kinase-1-induced signaling to SRF.  (+info)

(4/221) Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase.

The actin cytoskeleton undergoes extensive remodeling during cell morphogenesis and motility. The small guanosine triphosphatase Rho regulates such remodeling, but the underlying mechanisms of this regulation remain unclear. Cofilin exhibits actin-depolymerizing activity that is inhibited as a result of its phosphorylation by LIM-kinase. Cofilin was phosphorylated in N1E-115 neuroblastoma cells during lysophosphatidic acid-induced, Rho-mediated neurite retraction. This phosphorylation was sensitive to Y-27632, a specific inhibitor of the Rho-associated kinase ROCK. ROCK, which is a downstream effector of Rho, did not phosphorylate cofilin directly but phosphorylated LIM-kinase, which in turn was activated to phosphorylate cofilin. Overexpression of LIM-kinase in HeLa cells induced the formation of actin stress fibers in a Y-27632-sensitive manner. These results indicate that phosphorylation of LIM-kinase by ROCK and consequently increased phosphorylation of cofilin by LIM-kinase contribute to Rho-induced reorganization of the actin cytoskeleton.  (+info)

(5/221) The N-terminal LIM domain negatively regulates the kinase activity of LIM-kinase 1.

LIM-kinase 1 (LIMK1, where LIM is an acronym of the three gene products Lin-11, Isl-1 and Mec-3) is a serine/threonine kinase that phosphorylates cofilin and regulates actin cytoskeletal reorganization. LIMK1 contains two LIM domains and a PDZ (an acronym of the three proteins PSD-95, Dlg and ZO-1) domain in the N-terminal half and a kinase domain in the C-terminal half. In this study we examined the role of the extra-catalytic region in the regulation of kinase activity of LIMK1. Limited proteolysis of LIMK1 resulted in the production of the 35-40-kDa kinase core fragments with 3.5-5. 5-fold increased kinase activity. The LIMK1 mutants with deleted LIM domains (DeltaLIM) or conserved cysteines in the two LIM domains replaced with glycines (dmLIMK1) had 3-7-fold higher kinase activities in vitro, compared with the wild-type LIMK1. The C-terminal kinase fragment of LIMK1 bound to the LIM domain but not to the PDZ domain. Furthermore, the LIM fragment dose-dependently inhibited the kinase catalytic activity of the kinase core fragment of LIMK1. Taken together, these results suggest that the N-terminal LIM domain negatively regulates the kinase activity of LIMK1 by direct interaction with the C-terminal kinase domain. In addition, expression of the DeltaLIM mutant in cultured cells induced punctate accumulation of actin filaments, an event distinct from the pattern of actin organization induced by expression of the wild-type LIMK1, suggesting that the LIM domain plays a role in the function of LIMK1 in vivo.  (+info)

(6/221) Regulation of actin dynamics: The LIM kinase connection.

A signalling pathway has recently been delineated that connects Rho-family GTPases to the cytoskeleton via LIM kinase and the F-actin depolymerising protein cofilin. The existence of this pathway helps to explain some of the effects of LIM kinase and cofilin in the control of actin dynamics.  (+info)

(7/221) Cofilin phosphorylation and actin cytoskeletal dynamics regulated by rho- and Cdc42-activated LIM-kinase 2.

The rapid turnover of actin filaments and the tertiary meshwork formation are regulated by a variety of actin-binding proteins. Protein phosphorylation of cofilin, an actin-binding protein that depolymerizes actin filaments, suppresses its function. Thus, cofilin is a terminal effector of signaling cascades that evokes actin cytoskeletal rearrangement. When wild-type LIMK2 and kinase-dead LIMK2 (LIMK2/KD) were respectively expressed in cells, LIMK2, but not LIMK2/KD, phosphorylated cofilin and induced formation of stress fibers and focal complexes. LIMK2 activity toward cofilin phosphorylation was stimulated by coexpression of activated Rho and Cdc42, but not Rac. Importantly, expression of activated Rho and Cdc42, respectively, induced stress fibers and filopodia, whereas both Rho- induced stress fibers and Cdc42-induced filopodia were abrogated by the coexpression of LIMK2/KD. In contrast, the coexpression of LIMK2/KD with the activated Rac did not affect Rac-induced lamellipodia formation. These results indicate that LIMK2 plays a crucial role both in Rho- and Cdc42-induced actin cytoskeletal reorganization, at least in part by inhibiting the functions of cofilin. Together with recent findings that LIMK1 participates in Rac-induced lamellipodia formation, LIMK1 and LIMK2 function under control of distinct Rho subfamily GTPases and are essential regulators in the Rho subfamilies-induced actin cytoskeletal reorganization.  (+info)

(8/221) A protein kinase from neutrophils that specifically recognizes Ser-3 in cofilin.

Cofilin promotes the depolymerization of actin filaments, which is required for a variety of cellular responses such as the formation of lamellipodia and chemotaxis. Phosphorylation of cofilin on serine residue 3 is known to block these activities. We now report that neutrophils contain a protein kinase that selectively catalyzes the phosphorylation of cofilin on serine 3 (>/=70%) and a nonspecific kinase that recognizes multiple sites in this protein. The selective serine 3 cofilin kinase binds to a deoxyribonuclease I affinity column, whereas the nonspecific cofilin kinase does not. Deoxyribonuclease I forms a very tight complex with actin, and deoxyribonuclease affinity columns have been utilized to identify a variety of proteins that interact with the cytoskeleton. The serine 3 cofilin kinase did not react with antibodies to LIM kinase 1 or 2, which can catalyze the phosphorylation of cofilin in other cell types. The activity of the serine 3 cofilin kinase was insensitive to a variety of selective antagonists of protein kinases but was blocked by staurosporine. This pattern of inhibition is similar to that observed for the kinase that is active with cofilin in intact neutrophils. Thus, neutrophils contain a protein kinase distinct from LIM kinase-1/2 that selectively recognizes serine 3 in cofilin.  (+info)