(1/24796) Regulation of body length and male tail ray pattern formation of Caenorhabditis elegans by a member of TGF-beta family.

We have identified a new member of the TGF-beta superfamily, CET-1, from Caenorhabditis elegans, which is expressed in the ventral nerve cord and other neurons. cet-1 null mutants have shortened bodies and male tail abnormal phenotype resembling sma mutants, suggesting cet-1, sma-2, sma-3 and sma-4 share a common pathway. Overexpression experiments demonstrated that cet-1 function requires wild-type sma genes. Interestingly, CET-1 appears to affect body length in a dose-dependent manner. Heterozygotes for cet-1 displayed body lengths ranging between null mutant and wild type, and overexpression of CET-1 in wild-type worms elongated body length close to lon mutants. In male sensory ray patterning, lack of cet-1 function results in ray fusions. Epistasis analysis revealed that mab-21 lies downstream and is negatively regulated by the cet-1/sma pathway in the male tail. Our results show that cet-1 controls diverse biological processes during C. elegans development probably through different target genes.  (+info)

(2/24796) Dominant activity of activation function 1 (AF-1) and differential stoichiometric requirements for AF-1 and -2 in the estrogen receptor alpha-beta heterodimeric complex.

Estrogenic responses are now known to be mediated by two forms of estrogen receptors (ER), ERalpha and ERbeta, that can function as homodimers or heterodimers. As homodimers the two have been recently shown to exhibit distinct transcriptional responses to estradiol (E2), antiestrogens, and coactivators, suggesting that the ER complexes are not functionally equivalent. However, because the three possible configurations of ER complexes all recognize the same estrogen response element, it has not been possible to evaluate the transcriptional properties of the ER heterodimer complex by transfection assays. Using ER subunits with modified DNA recognition specificity, we were able to measure the transcriptional properties of ERalpha-ERbeta heterodimers in transfected cells without interference from the two ER homodimer complexes. We first demonstrated that the individual activation function 1 (AF-1) domains act in a dominant manner within the ERalpha-ERbeta heterodimer: the mixed agonist-antagonist 4-hydroxytamoxifen acts as an agonist in a promoter- and cell context-dependent manner via the ERalpha AF-1, while activation of the complex by the mitogen-activated protein kinase (MAPK) pathway requires only the ERalpha- or ERbeta-responsive MAPK site. Using ligand-binding and AF-2-defective mutants, we further demonstrated that while the ERalpha-ERbeta heterodimer can be activated when only one E2-binding competent partner is present per dimer, two functional AF-2 domains are required for transcriptional activity. Taken together, the results of this study of a retinoid X receptor-independent heterodimer complex, the first such study, provide evidence of different stoichiometric requirements for AF-1 and -2 activity and demonstrate that AF-1 receptor-specific properties are maintained within the ERalpha-ERbeta heterodimer.  (+info)

(3/24796) Neu differentiation factor stimulates phosphorylation and activation of the Sp1 transcription factor.

Neu differentiation factors (NDFs), or neuregulins, are epidermal growth factor-like growth factors which bind to two tyrosine kinase receptors, ErbB-3 and ErbB-4. The transcription of several genes is regulated by neuregulins, including genes encoding specific subunits of the acetylcholine receptor at the neuromuscular junction. Here, we have examined the promoter of the acetylcholine receptor epsilon subunit and delineated a minimal CA-rich sequence which mediates transcriptional activation by NDF (NDF-response element [NRE]). Using gel mobility shift analysis with an NRE oligonucleotide, we detected two complexes that are induced by treatment with neuregulin and other growth factors and identified Sp1, a constitutively expressed zinc finger phosphoprotein, as a component of one of these complexes. Phosphatase treatment, two-dimensional gel electrophoresis, and an in-gel kinase assay indicated that Sp1 is phosphorylated by a 60-kDa kinase in response to NDF-induced signals. Moreover, Sp1 seems to act downstream of all members of the ErbB family and thus may funnel the signaling of the ErbB network into the nucleus.  (+info)

(4/24796) Ligand substitution of receptor targeted DNA complexes affects gene transfer into hepatoma cells.

We have targeted the serpin enzyme complex receptor for gene transfer in human hepatoma cell lines using peptides < 30 amino acids in length which contain the five amino acid recognition sequence for this receptor, coupled to poly K of average chain length 100 K, using the heterobifunctional coupling reagent sulfo-LC SPDP. The number of sulfo-LC SPDP modified poly-L-lysine residues, as well as the degree of peptide substitution was assessed by nuclear magnetic resonance spectroscopy. Conjugates were prepared in which 3.5%, 7.8% or 26% of the lysine residues contained the sulfo-LC SPDP moiety. Each of these conjugates was then coupled with ligand peptides so that one in 370, one in 1039, or one in 5882 lysines were substituted with receptor ligand. Electron microscopy and atomic force microscopy were used to assess complex structure and size. HuH7 human hepatoma cells were transfected with complexes of these conjugates with the plasmid pGL3 and luciferase expression measured 2 to 16 days after treatment. All the protein conjugates in which 26% of the K residues were modified with sulfo-LC SPDP were poor gene transfer reagents. Complexes containing less substituted poly K, averaged 17 +/- 0.5 nm in diameter and gave peak transgene expression of 3-4 x 10(6) ILU/mg which persisted (> 7 x 10(5) ILU) at 16 days. Of these, more substituted polymers condensed DNA into complexes averaging 20 +/- 0.7 nm in diameter and gave five-fold less luciferase than complexes containing less substituted conjugates. As few as eight to 11 ligands per complex are optimal for DNA delivery via the SEC receptor. The extent of substitution of receptor-mediated gene transfer complexes affects the size of the complexes, as well as the intensity and duration of transgene expression. These observations may permit tailoring of complex construction for the usage required.  (+info)

(5/24796) p27 is involved in N-cadherin-mediated contact inhibition of cell growth and S-phase entry.

In this study the direct involvement of cadherins in adhesion-mediated growth inhibition was investigated. It is shown here that overexpression of N-cadherin in CHO cells significantly suppresses their growth rate. Interaction of these cells and two additional fibroblastic lines with synthetic beads coated with N-cadherin ligands (recombinant N-cadherin ectodomain or specific antibodies) leads to growth arrest at the G1 phase of the cell cycle. The cadherin-reactive beads inhibit the entry into S phase and the reduction in the levels of cyclin-dependent kinase (cdk) inhibitors p21 and p27, following serum-stimulation of starved cells. In exponentially growing cells these beads induce G1 arrest accompanied by elevation in p27 only. We propose that cadherin-mediated signaling is involved in contact inhibition of growth by inducing cell cycle arrest at the G1 phase and elevation of p27 levels.  (+info)

(6/24796) Thymic selection by a single MHC/peptide ligand: autoreactive T cells are low-affinity cells.

In H2-M- mice, the presence of a single peptide, CLIP, bound to MHC class II molecules generates a diverse repertoire of CD4+ cells. In these mice, typical self-peptides are not bound to class II molecules, with the result that a very high proportion of H2-M- CD4+ cells are responsive to the various peptides displayed on normal MHC-compatible APC. We show here, however, that such "self" reactivity is controlled by low-affinity CD4+ cells. These cells give spectacularly high proliferative responses but are virtually unreactive in certain other assays, e.g., skin graft rejection; responses to MHC alloantigens, by contrast, are intense in all assays. Possible explanations for why thymic selection directed to a single peptide curtails self specificity without affecting alloreactivity are discussed.  (+info)

(7/24796) Calorimetric studies on the stability of the ribosome-inactivating protein abrin II: effects of pH and ligand binding.

The effects of pH and ligand binding on the stability of abrin II, a heterodimeric ribosome-inactivating protein, and its subunits have been studied using high-sensitivity differential scanning calorimetry. At pH7.2, the calorimetric scan consists of two transitions, which correspond to the B-subunit [transition temperature (Tm) 319.2K] and the A-subunit (Tm 324.6K) of abrin II, as also confirmed by studies on the isolated A-subunit. The calorimetric enthalpy of the isolated A-subunit of abrin II is similar to that of the higher-temperature transition. However, its Tm is 2.4K lower than that of the higher-temperature peak of intact abrin II. This indicates that there is some interaction between the two subunits. Abrin II displays increased stability as the pH is decreased to 4.5. Lactose increases the Tm values as well as the enthalpies of both transitions. This effect is more pronounced at pH7.2 than at pH4.5. This suggests that ligand binding stabilizes the native conformation of abrin II. Analysis of the B-subunit transition temperature as a function of lactose concentration suggests that two lactose molecules bind to one molecule of abrin II at pH7.2. The presence of two binding sites for lactose on the abrin II molecule is also indicated by isothermal titration calorimetry. Plotting DeltaHm (the molar transition enthalpy at Tm) against Tm yielded values for DeltaCp (change in excess heat capacity) of 27+/-2 kJ.mol-1.K-1 for the B-subunit and 20+/-1 kJ.mol-1.K-1 for the A-subunit. These values have been used to calculate the thermal stability of abrin II and to surmise the mechanism of its transmembrane translocation.  (+info)

(8/24796) The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis.

Transforming growth factor beta (TGF beta) family members are secreted in inactive complexes with a latency-associated peptide (LAP), a protein derived from the N-terminal region of the TGF beta gene product. Extracellular activation of these complexes is a critical but incompletely understood step in regulation of TGF beta function in vivo. We show that TGF beta 1 LAP is a ligand for the integrin alpha v beta 6 and that alpha v beta 6-expressing cells induce spatially restricted activation of TGF beta 1. This finding explains why mice lacking this integrin develop exaggerated inflammation and, as we show, are protected from pulmonary fibrosis. These data identify a novel mechanism for locally regulating TGF beta 1 function in vivo by regulating expression of the alpha v beta 6 integrin.  (+info)