Loading...
(1/1391) Viral gene delivery selectively restores feeding and prevents lethality of dopamine-deficient mice.

Dopamine-deficient mice (DA-/- ), lacking tyrosine hydroxylase (TH) in dopaminergic neurons, become hypoactive and aphagic and die by 4 weeks of age. They are rescued by daily treatment with L-3,4-dihydroxyphenylalanine (L-DOPA); each dose restores dopamine (DA) and feeding for less than 24 hr. Recombinant adeno-associated viruses expressing human TH or GTP cyclohydrolase 1 (GTPCH1) were injected into the striatum of DA-/- mice. Bilateral coinjection of both viruses restored feeding behavior for several months. However, locomotor activity and coordination were partially improved. A virus expressing only TH was less effective, and one expressing GTPCH1 alone was ineffective. TH immunoreactivity and DA were detected in the ventral striatum and adjacent posterior regions of rescued mice, suggesting that these regions mediate a critical DA-dependent aspect of feeding behavior.  (+info)

(2/1391) Dopamine correlates of neurological and psychological status in untreated Parkinsonism.

Thirty-seven untreated Parkinsonism patients showed significant positive correlations among decreased excretion of free dopamine, MMPI scores indicative of schizophrenic-like looseness of thinking, and the severity of all Parkinsonism signs except tremor. The data could indicate that abnormalities of dopamine metabolism may underlie both the motor and mental abnormalities of Parkinsonism.  (+info)

(3/1391) Aromatic L-amino acid decarboxylase: conformational change in the flexible region around Arg334 is required during the transaldimination process.

Aromatic L-amino acid decarboxylase (AADC) catalytic mechanism has been proposed to proceed through two consecutive intermediates (i.e., Michaelis complex and the external aldimine). Limited proteolysis of AADC that preferentially digested at the C-terminal side of Arg334 was slightly retarded in the presence of dihydroxyphenyl acetate that formed a stable Michaelis complex. On the contrary, AADC was scarcely digested in the presence of L-dopa methyl ester that formed a stable external aldimine. Similar protection by the substrate analogs was observed in the chemical modification experiment. From these results, we concluded that the region around Arg334 must be exposed and flexible in the unliganded state, and forming the Michaelis complex generated a subtle conformational change, then underwent marked conformational change during the subsequent transaldimination process prerequisite to forming the external aldimine. For further analyses, we constructed a mutant gene encoding in tandem the two peptides of AADC cleaved at the Asn327-Met328 bond inside the putative flexible region. The gene product, fragmentary AADC, was still active with L-dopa as substrate, but its k(cat) value was decreased 57-fold, and the Km value was increased 9-fold compared with those of the wild-type AADC. The absorption spectra of the fragmentary AADC in the presence of L-dopa methyl ester showed shift in the equilibrium of the transaldimination from the external aldimine to the Michaelis complex. Tryptic digestion of the fragmentary AADC removed seven amino acid residues, Met328-Arg334, and resulted in complete inactivation. Susceptibility of the fragmentary enzyme to trypsin was not changed by L-dopa methyl ester revealing the loss of appropriate conformational change in the flexible region induced by substrate binding. From these results we propose that the conformational change in the flexible region is required during the transaldimination process.  (+info)

(4/1391) Both the antioxidant and D3 agonist actions of pramipexole mediate its neuroprotective actions in mesencephalic cultures.

Pramipexole (PPX) is a full intrinsic activity, direct-acting dopamine (DA) agonist possessing 7-fold higher affinity for D3 than for D2 receptors. It also is a potent antioxidant. PPX was previously shown to be neuroprotective because it dose dependently attenuated the DA neuron loss produced by levodopa in mesencephalic cultures. Several different drugs with properties similar to PPX were studied here to better understand the mechanism or mechanisms responsible for this neuroprotective effect. The D3-preferring agonist 7-hydroxy-diphenylaminotetralin (7-OH-DPAT) and the D3 antagonist U99194, respectively, increased and decreased the neuroprotective effects of PPX in a dose-dependent fashion. Addition of the selective D2 agonist U95666 or the D2/D3 antagonists domperidone or raclopride did not affect PPX's neuroprotective effect. Interestingly, 7-OH-DPAT by itself did not attenuate the DA neuron loss produced by levodopa. However, when 7-OH-DPAT was combined with a low dose of the antioxidants U101033E or alpha-tocopherol, the toxic effects of levodopa were attenuated. Similar results were observed when the D3-preferring agonist PD128, 907 was studied. In addition, media conditioned by exposure of mesencephalic cultures incubated with all D3-preferring agonists studied was shown to enhance the growth of DA neurons in freshly harvested recipient cultures implicating a D3-mediated trophic activity in the neuroprotective effect. These data suggest that PPX's neuroprotective actions in the levodopa toxicity model are a consequence of its combined actions as a D3 receptor agonist and an antioxidant.  (+info)

(5/1391) Vesicular monoamine transporter-2 and aromatic L-amino acid decarboxylase enhance dopamine delivery after L-3, 4-dihydroxyphenylalanine administration in Parkinsonian rats.

Medical therapy in Parkinson's disease (PD) is limited by the short-duration response and development of dyskinesia that result from chronic L-3,4-dihydroxyphenylalanine (L-DOPA) therapy. These problems occur partly because the loss of dopamine storage sites leads to erratic dopamine delivery. Vesicular monoamine transporter-2 (VMAT-2) plays a critical role in dopamine storage by packaging dopamine into synaptic vesicles and regulating sustained release of dopamine. To restore the capacity to produce and store dopamine in parkinsonian rats, primary skin fibroblast cells (PF) were genetically modified with aromatic L-amino acid decarboxylase (AADC) and VMAT-2 genes. After incubation with L-DOPA in culture, the doubly transduced fibroblast cells (PFVMAA) produced and stored dopamine at a much higher level than the cells with either gene alone. PFVMAA cells in culture released dopamine gradually in a constitutive manner. Genetically modified fibroblast cells were grafted in parkinsonian rat striata, and L-DOPA was systemically administered. Higher dopamine levels were sustained for a longer duration in rats grafted with PFVMAA cells than in those grafted with either control cells or cells with AADC alone. These findings underscore the importance of dopamine storage capacity in determining the efficacy of L-DOPA therapy and illustrate a novel method of gene therapy combined with precursor administration to overcome the major obstacles of PD treatment.  (+info)

(6/1391) Studies on the role of dopamine in the degeneration of 5-HT nerve endings in the brain of Dark Agouti rats following 3,4-methylenedioxymethamphetamine (MDMA or 'ecstasy') administration.

1. We investigated whether dopamine plays a role in the neurodegeneration of 5-hydroxytryptamine (5-HT) nerve endings occurring in Dark Agouti rat brain after 3,4-methylenedioxymethamphetamine (MDMA or 'ecstasy') administration. 2. Haloperidol (2 mg kg(-1) i.p.) injected 5 min prior and 55 min post MDMA (15 mg kg(-1) i.p.) abolished the acute MDMA-induced hyperthermia and attenuated the neurotoxic loss of 5-HT 7 days later. When the rectal temperature of MDMA + haloperidol treated rats was kept elevated, this protective effect was marginal. 3. MDMA (15 mg kg(-1)) increased the dopamine concentration in the dialysate from a striatal microdialysis probe by 800%. L-DOPA (25 mg kg(-1) i.p., plus benserazide, 6.25 mg kg(-1) i.p.) injected 2 h after MDMA (15 mg kg(-1)) enhanced the increase in dopamine in the dialysate, but subsequent neurodegeneration was unaltered. L-DOPA (25 mg kg(-1)) injected before a sub-toxic dose of MDMA (5 mg kg(-1)) failed to induce neurodegeneration. 4. The MDMA-induced increase in free radical formation in the hippocampus (indicated by increased 2,3- and 2,5-dihydroxybenzoic acid in a microdialysis probe perfused with salicylic acid) was unaltered by L-DOPA. 5. The neuroprotective drug clomethiazole (50 mg kg(-1) i.p.) did not influence the MDMA-induced increase in extracellular dopamine. 6. These data suggest that previous observations on the protective effect of haloperidol and potentiating effect of L-DOPA on MDMA-induced neurodegeneration may have resulted from effects on MDMA-induced hyperthermia. 7. The increased extracellular dopamine concentration following MDMA may result from effects of MDMA on dopamine re-uptake, monoamine oxidase and 5-HT release rather than an 'amphetamine-like' action on dopamine release, thus explaining why the drug does not induce degeneration of dopamine nerve endings.  (+info)

(7/1391) Efficacy, safety, and tolerance of the non-ergoline dopamine agonist pramipexole in the treatment of advanced Parkinson's disease: a double blind, placebo controlled, randomised, multicentre study.

OBJECTIVES: Pramipexole, a non-ergot dopamine D2/D3 receptor agonist, was investigated as an add on drug in advanced parkinsonian patients with motor fluctuations to assess efficacy, safety, and tolerance. METHODS: Seventy eight patients of either sex with advanced Parkinson's disease and treatment complications such as motor fluctuations were enrolled into a double blind, placebo controlled, randomised, multicentre study (phase II) and assigned to add on treatment with pramipexole (n=34) versus placebo (n=44) to a previously stabilised antiparkinsonian medication (7 week dose titration interval, 4 week maintenance period). The primary end point of efficacy was the change from baseline in the total score of the unified Parkinson's disease rating scale (UPDRS) in the on "period" (2 hours after intake of study medication). Safety and tolerability were assessed on the basis of adverse events, vital signs, laboratory measurements, and ECG recordings. RESULTS: There was a significant improvement of the pramipexole group in UPDRS total scores, subscores part II, III (activities of daily living and motor examination), and IV (complications of therapy). Mean UPDRS total score decreased by 37.3% under pramipexole compared with 12.2% under placebo (p<0.001). Patients under pramipexole reported an overall reduction in "off" periods of 12%--resulting in 1.7 more hours "on" time a day--compared with an increase in "off" periods of 2% under placebo. There were no unexpected safety results. The adverse event profile disclosed a high tolerability. The most important adverse events under pramipexole were fatigue, dyskinesia, and vivid dreams. CONCLUSION: Pramipexole administration is an efficacious and well tolerated add on therapy in patients with advanced Parkinson's disease with an improvement in activities of daily living, motor function, and treatment associated complications.  (+info)

(8/1391) Impairment of EEG desynchronisation before and during movement and its relation to bradykinesia in Parkinson's disease.

OBJECTIVE: It has been suggested that the basal ganglia act to release cortical elements from idling (alpha) rhythms so that they may become coherent in the gamma range, thereby binding together those distributed activities necessary for the effective selection and execution of a motor act. This hypothesis was tested in 10 patients with idiopathic Parkinson's disease. METHODS: Surface EEG was recorded during self paced squeezing of the hand and elbow flexion performed separately, simultaneously, or sequentially. Recordings were made after overnight withdrawal of medication and, again, 1 hour after levodopa. The medication related improvement in EEG desynchronisation (in the 7.5-12.5 Hz band) over the 1 second before movement and during movement were separately correlated with the improvement in movement time for each electrode site. Correlation coefficients (r) > 0.632 were considered significant (p<0.05). RESULTS: Improvement in premovement desynchronisation correlated with reduction in bradykinesia over the contralateral sensorimotor cortex and supplementary motor area in flexion and squeeze, respectively. However, when both movements were combined either simultaneously or sequentially, this correlation shifted anteriorly, to areas overlying prefrontal cortex. Improvement in EEG desynchronisation during movement only correlated with reduction in bradykinesia in two tasks. Correlation was seen over the supplementary motor area during flexion, and central prefrontal and ipsilateral premotor areas during simultaneous flex and squeeze. CONCLUSIONS: The results are consistent with the idea that the basal ganglia liberate frontal cortex from idling rhythms, and that this effect is focused and specific in so far as it changes with the demands of the task. In particular, the effective selection and execution of more complex tasks is associated with changes over the prefrontal cortex.  (+info)