Intracerebral adeno-associated virus-mediated gene transfer in rapidly progressive forms of metachromatic leukodystrophy. (33/118)

Metachromatic leukodystrophy (MLD) is a neurodegenerative lysosomal disease caused by a defect of the enzyme arylsulfatase A (ARSA) that disrupts the degradation of sulfatides (Sulf) in neurons and glial cells. Therapy for MLD requires active production of ARSA in the brain to prevent demyelination and neuronal damage, and efficient delivery of ARSA to act faster than disease progression, particularly in the rapidly progressive late infantile form. We used an adeno-associated virus serotype 5 (AAV5) vector to express the human ARSA gene in the brain of MLD mouse model. We achieved rapid, extensive and long-lasting expression of the recombinant ARSA in the brain, cerebellum and brainstem from at least 3 to 15 months post-injection. Analysis of the vector genome and ARSA distribution gave evidence for in vivo cross-correction of many untransduced neurons and astrocytes. ARSA delivery rapidly reversed Sulf storage and prevented neuropathological abnormalities and neuromotor impairment. We believe that AAV5-mediated brain delivery of ARSA is a potentially efficacious therapeutic strategy for MLD patients, especially for those with rapidly progressive form of the disease.  (+info)

Oligodendroglial progenitor cell therapy limits central neurological deficits in mice with metachromatic leukodystrophy. (34/118)

This work describes the first successful oligodendrocyte-based cell therapy for presymptomatic arylsulfatase A (ARSA) null neonate mice, a murine model for human metachromatic leukodystrophy (MLD). We found that oligodendrocyte progenitors (OLPs) engrafted and survived into adulthood when transplanted in the neonatal MLD brain. Transplanted cells integrated nondisruptively, did not produce tumors, and survived as proteolipid protein- and MBP-positive postmitotic myelinating oligodendrocytes (OLs) intermingled with endogenous MLD OLs within the adult MLD white matter. Transplanted MLD mice had reduced sulfatide accumulation in the CNS, increased brain ARSA activity, and full prevention of the electrophysiological and motor deficits that characterize untreated MLD mice. Our results provide direct evidence that healthy OLPs can tolerate the neurotoxic accumulation of sulfatides that evolves during the postnatal development of the MLD brain and contribute to OL cell replacement to limit the accumulation of sulfatides and the evolution of CNS defects in this lysosomal storage disease mouse model.  (+info)

Molecular basis of different forms of metachromatic leukodystrophy. (35/118)

BACKGROUND: Metachromatic leukodystrophy is an autosomal recessive inherited lysosomal storage disorder caused by a deficiency of arylsulfatase A. Three forms of the disease can be distinguished according to severity and the age at onset: late infantile (1 to 2 years), juvenile (3 to 16), and adult (greater than 16). METHODS AND RESULTS: To understand the molecular basis of the different forms of the disease, we analyzed arylsulfatase A alleles associated with metachromatic leukodystrophy. Two alleles (termed I and A) were identified and accounted for about half of all arylsulfatase A alleles among 68 patients with metachromatic leukodystrophy whom we examined. Sufficient information was available for 66 of the patients to allow classification of their disease. Of the six instances of homozygosity for allele I, all were associated with the late-infantile form of the disease; of the eight instances of homozygosity for allele A, five were associated with the adult form and three with the juvenile form. When both alleles were present, the juvenile form resulted (seven of seven instances). Heterozygosity for allele I (with the other allele unknown) is usually associated with late-infantile disease, and heterozygosity for allele A with a later onset of the disease. The clinical variability can be explained by the different levels of residual arylsulfatase A activity associated with these genotypes. CONCLUSIONS: Like many lysosomal storage disorders, metachromatic leukodystrophy shows clinical heterogeneity that seems to reflect genetic heterogeneity. One of the known alleles (allele I) is associated with earlier and more severe disease than the other (allele A).  (+info)

Identification of a mutation in the arylsulfatase A gene of a patient with adult-type metachromatic leukodystrophy. (36/118)

To analyze the genetic abnormality in a Japanese patient with adult-type metachromatic leukodystrophy (MLD), we first elucidated the genomic organization of the human arylsulfatase A (ASA) gene and then compared the nucleotide sequences of exons and splice junctions of the mutant ASA gene to those of a normal control. We have identified a new mutation, a G-to-A transition in exon 2, which results in amino acid substitution of Asp for 99Gly. In a transient expression study, COS cells transfected with the mutant cDNA carrying 99Gly----Asp did not show an increase of ASA activity, which confirms that the mutation is a cause of adult-type MLD.  (+info)

Mutations in the arylsulfatase A pseudodeficiency allele causing metachromatic leukodystrophy. (37/118)

We identified a patient suffering from late infantile metachromatic leukodystrophy who genetically seemed to be homozygous for the mutations signifying the arylsulfatase A pseudodeficiency allele. Homozygosity for the pseudodeficiency allele is associated with low arylsulfatase A activity but does not cause a disease. Analysis of the arylsulfatase A gene in this patient revealed a C----T transition in exon 2, causing a Ser 96----Phe substitution in addition to the sequence alterations causing arylsulfatase A pseudodeficiency. Although this mutation was found only in 1 of 78 metachromatic leukodystrophy patients tested, five more patients were identified who seemed hetero- or homozygous for the pseudodeficiency allele. The existence of nonfunctional arylsulfatase A alleles derived from the pseudodeficiency allele calls for caution when the diagnosis of arylsulfatase A pseudodeficiency is based solely on the identification of the mutations characterizing the pseudodeficiency allele.  (+info)

Two new arylsulfatase A (ARSA) mutations in a juvenile metachromatic leukodystrophy (MLD) patient. (38/118)

Fragments of the arylsulfatase A (ARSA) gene from a patient with juvenile-onset metachromatic leukodystrophy (MLD) were amplified by PCR and ligated into MP13 cloning vectors. Clones hybridizing with cDNA for human ARSA were selected, examined for appropriate size inserts, and used to prepare single-stranded phage DNA. Examination of the entire coding and most of the intronic sequence revealed two putative disease-related mutations. One, a point mutation in exon 3, resulted in the substitution of isoleucine by serine. Introduction of this alteration into the normal ARSA cDNA sequence resulted in a substantial decrease in ARSA activity on transient expression in cultured baby hamster kidney cells. About 5% of the control expression was observed, suggesting a small residual activity in the mutated ARSA. The second mutation, a G-to-A transition, occurred in the other allele and resulted in an altered splice-recognition sequence between exon 7 and the following intron. The mutation also resulted in the loss of a restriction site. Apparently normal levels of mRNA were generated from this allele, but no ARSA activity or immuno-cross-reactive material could be detected. A collection of DNA samples from known or suspected MLD patients, members of their families, and normal controls was screened for these mutations. Four additional individuals carrying each of the mutations were found among the nearly 100 MLD patients in the sample. Gene segregation in the original patient's family was consistent with available clinical and biochemical data. No individuals homozygous for either of these two mutations were identified. However, combinations with other MLD mutations suggest that the point mutation in exon 3 does result in some residual enzyme activity and is associated with late-onset forms of the disease. The splice-site mutation following exon 7 produces late-infantile MLD when combined with other enzyme-null mutations, implying that it is completely silent enzymatically.  (+info)

Restoration of arylsulphatase A activity in human-metachromatic-leucodystrophy fibroblasts via retroviral-vector-mediated gene transfer. (39/118)

Metachromatic leukodystrophy is a lysosomal storage disease caused by the deficiency of arylsulphatase A (ASA). A human ASA cDNA was subcloned into the retroviral vector pXT1. Replication-defective retrovirus was generated by transfection of the vector into the amphotropic packaging cell line PA317. Human fibroblasts from a patient suffering from metachromatic leucodystrophy was infected with the recombinant retrovirus. Infected fibroblasts expressed ten times more ASA compared with control fibroblasts from a normal individual. The ASA encoded by the integrated provirus was shown to be correctly transported into the lysosomes and to normalize the impaired degradation of cerebroside sulphate.  (+info)

Leukodystrophy, skin hyperpigmentation, and adrenal atrophy: Siemerling-Creutzfeldt disease. Transmission through several generations in two families. (40/118)

Two apparently unrelated families with a history of leukodystrophy associated with adrenal insufficiency are presented. Only about 20 cases of this syndrome have been reported until now. It was first described by Siemerling and Creutzfeldt; therefore we propose the designation Siemerling-Creutzfeldt disease. Our pedigrees include 15 additional cases and prove that this disease is inherited as an X-linked or as an autosomal dominant trait with male sex limitation. Within these families, the interindividual variability of clinical signs is remarkable. Patients can survive into the fifth decade, and one has reproduced. Attempts to identify heterozygotes on the basis of endocrinologic investigations were unsuccessful.  (+info)