Cloning of the cellular receptor for feline leukemia virus subgroup C (FeLV-C), a retrovirus that induces red cell aplasia. (9/376)

Feline leukemia virus-C (FeLV-C) causes red cell aplasia in cats, likely through its interaction with its cell surface receptor. We identified this receptor by the functional screening of a library of complementary DNAs (cDNA) from feline T cells. The library, which was cloned into a retroviral vector, was introduced into FeLV-C-resistant murine (NIH 3T3) cells. The gene conferring susceptibility to FeLV-C was isolated and reintroduced into the same cell type, as well as into FeLV-C-resistant rat (NRK 52E) cells, to verify its role in viral infection. The receptor cDNA is predicted to encode a protein of 560 amino acids with 12 membrane-spanning domains, termed FLVCR. FLVCR has significant amino acid sequence homology with members of the major facilitator superfamily and especially D-glucarate transporters described in bacteria and in C. elegans. As FeLV-C impairs the in vivo differentiation of burst-forming unit-erythroid to colony-forming unit-erythroid, we hypothesize that this transporter system could have an essential role in early erythropoiesis. In further studies, a 6-kb fragment of the human FLVCR gene was amplified by polymerase chain reaction from genomic DNA, using homologous cDNA sequences identified in the human Expressed Sequence Tags database. By radiation hybrid mapping, the human gene was localized to a 0.5-centiMorgan region on the long arm of chromosome 1 at q31.3.  (+info)

Bone marrow necrosis in a cat infected with feline leukemia virus. (10/376)

A one-year old castrated male cat was admitted to the hospital with vomiting and diarrhea. Laboratory examination revealed pancytopenia and positive for FeLV antigen. A bone marrow examination indicated necrosis of the nucleated cells. Based on these findings, the cat was diagnosed as bone marrow necrosis. Pancytopenia was effectively treated with corticosteroids. Re-examination of the bone marrow confirmed a recovery of normal hematopoietic cells with a infiltration of many macrophages. It is strongly suspected that the bone marrow necrosis in this case could be associated with a bone marrow suppression due to FeLV infection.  (+info)

A 13-amino-acid Pit1-specific loop 4 sequence confers feline leukemia virus subgroup B receptor function upon Pit2. (11/376)

Feline leukemia virus subgroup B (FeLV-B) and gibbon ape leukemia virus (GALV) utilize the human protein Pit1 but not the related protein, Pit2, as receptor. A stretch of 9 amino acids, named region A, was identified in the putative fourth extracellular loop of Pit1 (residues 550 through 558) as critical for FeLV-B and GALV receptor function. However, the presence of Pit1 region A did not confer receptor function for FeLV-B upon Pit2, while it did so for GALV. We have here shown that the presence of two Pit1-specific loop 4 residues (tyrosine 546 and valine 548) in addition to Pit1 region A is sufficient to make Pit2 an efficient FeLV-B receptor; that is, a stretch of 13 amino acids encompassing all loop 4 amino acid differences between Pit1 and Pit2 comprises a C-terminal determinant for FeLV-B receptor function. Thus, the same limited receptor region is sufficient to confer receptor function for both viruses upon Pit2.  (+info)

Identification of a cellular cofactor required for infection by feline leukemia virus. (12/376)

Retroviral infection involves continued genetic variation, leading to phenotypic and immunological selection for more fit virus variants in the host. For retroviruses that cause immunodeficiency, pathogenesis is linked to the emergence of T cell-tropic, cytopathic viruses. Here we show that an immunodeficiency-inducing, T cell-tropic feline leukemia virus (FeLV) has evolved such that it cannot infect cells unless both a classic multiple membrane-spanning receptor molecule (Pit1) and a second coreceptor or entry factor are present. This second receptor component, which we call FeLIX, was identified as an endogenously expressed protein that is similar to a portion of the FeLV envelope protein. This cellular protein can function either as a transmembrane protein or as a soluble component to facilitate infection.  (+info)

Expression of viral proteins in feline leukemia virus-associated enteritis. (13/376)

Fourteen cases of feline leukemia virus (FeLV)-associated enteritis were immunohistologically examined for the expression of FeLV proteins gp70, p27, and p15E in the jejunum, mesenteric lymph nodes, spleen, and bone marrow. Results were compared with those of FeLV-infected cats without intestinal alterations. Other viral infections and specific bacterial, fungal, and parasitic infections were excluded by standard microbiologic methods, histopathology, immunohistology, and in situ hybridization. In FeLV-associated enteritis, FeLV gp70 and p15E were strongly expressed in intestinal crypt epithelial cells. In contrast, FeLV-positive cats without intestinal alterations showed only faint staining for gp70 and p15E and comparatively strong p27 expression in these cells. Findings suggest a direct relation between FeLV infection and alterations in intestinal crypt epithelial cells that may be attributed to the envelope proteins gp70 and p15E and/or their precursor protein. Distinct similarities to the intestinal changes in the experimentally induced FeLV-feline AIDS syndrome are obvious, suggesting that naturally occurring feline AIDS variants may be responsible for FeLV-associated enteritis.  (+info)

Feline leukemia virus envelope sequences that affect T-cell tropism and syncytium formation are not part of known receptor-binding domains. (14/376)

The envelope protein is a primary pathogenic determinant for T-cell-tropic feline leukemia virus (FeLV) variants, the best studied of which is the immunodeficiency-inducing virus, 61C. We have previously demonstrated that T-cell-tropic, cytopathic, and syncytium-inducing viruses evolve in cats infected with a relatively avirulent, transmissible form of FeLV, 61E. The envelope gene of an 81T variant, which encoded scattered single-amino-acid changes throughout the envelope as well as a 4-amino-acid insertion in the C-terminal half of the surface unit (SU) of envelope, was sufficient to confer the T-cell-tropic, cytopathic phenotype (J. L. Rohn, M. S. Moser, S. R. Gwynn, D. N. Baldwin, and J. Overbaugh, J. Virol. 72:2686-2696, 1998). In the present study, we examined the role of the 4-amino-acid insertion in determining viral replication and tropism of FeLV-81T. The 4-amino-acid insertion was found to be functionally equivalent to a 6-amino-acid insertion at an identical location in the 61C variant. However, viruses expressing a chimeric 61E/81T SU, containing the insertion together with the N terminus of 61E SU, were found to be replication defective and were impaired in the processing of the envelope precursor into the functional SU and transmembrane (TM) proteins. In approximately 10% of cultured feline T cells (3201) transfected with the 61E/81T envelope chimeras and maintained over time, replication-competent tissue culture-adapted variants were isolated. Compensatory mutations in the SU of the tissue culture-adapted viruses were identified at positions 7 and 375, and each was shown to restore envelope protein processing when combined with the C-terminal 81T insertion. Unexpectedly, these viruses displayed different phenotypes in feline T cells: the virus with a change from glutamine to proline at position 7 acquired a T-cell-tropic, cytopathic phenotype, whereas the virus with a change from valine to leucine at position 375 had slower replication kinetics and caused no cytopathic effects. Given the differences in the replication properties of these viruses, it is noteworthy that the insertion as well as the two single-amino-acid changes all occur outside of predicted FeLV receptor-binding domains.  (+info)

Differential pathogenicity of two feline leukemia virus subgroup A molecular clones, pFRA and pF6A. (15/376)

F6A, a molecular clone of subgroup A feline leukemia virus (FeLV) is considered to be highly infectious but weakly pathogenic. In recent studies with a closely related subgroup A molecular clone, FRA, we demonstrated high pathogenicity and a strong propensity to undergo recombination with endogenous FeLV (enFeLV), leading to a high frequency of transition from subgroup A to A/B. The present study was undertaken to identify mechanisms of FeLV pathogenesis that might become evident by comparing the two closely related molecular clones. F6A was shown to have an infectivity similar to that of FRA when delivered as a provirus. Virus load and antibody responses were also similar, although F6A-infected cats consistently carried higher virus loads than FRA-infected cats. However, F6A-infected cats were slower to undergo de novo recombination with enFeLV and showed slower progression to disease than FRA-infected cats. Tumors collected from nine pF6A- or pFRA-inoculated cats expressed lymphocyte markers for T cells (seven tumors) and B cells (one tumor), and non-T/B cells (one tumor). One cat with an A-to-A/C conversion developed erythrocyte hypoplasia. Genomic mapping of recombinants from pF6A- and pFRA-inoculated cats revealed similar crossover sites, suggesting that the genomic makeup of the recombinants did not contribute to increased progression to neoplastic disease. From these studies, the mechanism most likely to account for the pathologic differences between F6A and FRA is the lower propensity for F6A to undergo de novo recombination with enFeLV in vivo. A lower recombination rate is predicted to slow the transition from subgroup A to A/B and slow the progression to disease.  (+info)

Transduction of feline hematopoietic cells by oncoretroviral vectors pseudotyped with the subgroup A feline leukemia virus (FeLV-A). (16/376)

The domestic cat is an outbred species with many identified analogues of human genetic diseases. Therefore, it has the potential to serve as a large animal model for evaluating the feasibility of hematopoietic stem cell gene therapy. This study compared gene transfer rates into feline hematopoietic progenitors by oncoretroviral vectors pseudotyped with the subgroup A feline leukemia virus (FeLV-A), the gibbon ape leukemia virus (GALV), and the murine amphotropic virus. Gene transfer rates were superior with the FeLV-A pseudotypes, which were then tested for their ability to transduce a cat hematopoietic repopulating cell. At more than 1 year posttransplantation, persistent marking was seen in both lymphoid and myeloid lineages of a myeloablated domestic cat that had received autologous marrow cells transduced with an FeLV-A pseudotyped vector.  (+info)