Feline leukaemia virus LTR variation and disease association in a geographical and temporal cluster. (65/376)

Feline leukaemia virus (FeLV)-945 was previously identified in natural multicentric lymphomas and contains a 21 bp tandem triplication in the LTR. In the present study, FeLV LTR variation was examined in the cohort from which FeLV-945 was identified. The objectives of the study were to evaluate FeLV LTR variation within the cohort, to determine whether the FeLV-945 LTR was associated uniquely with multicentric lymphoma and to evaluate functional attributes that may have contributed selective advantage to the predominant LTR variants observed. T-cell tumours uniformly contained LTRs with duplicated enhancer sequences, although enhancer duplications conferred little transcriptional advantage. Non-T-cell malignant, proliferative and degenerative diseases contained LTRs with two, three or four tandemly repeated copies of the 21 bp sequence originally identified in FeLV-945. While the length and termini of enhancer duplications were variable, the 21 bp repeat unit was invariant. Triplication of the 21 bp repeat conferred the optimal replicative advantage in feline cells.  (+info)

Regulation of FeLV-945 by c-Myb binding and CBP recruitment to the LTR. (66/376)

BACKGROUND: Feline leukemia virus (FeLV) induces degenerative, proliferative and malignant hematologic disorders in its natural host, the domestic cat. FeLV-945 is a viral variant identified as predominant in a cohort of naturally infected animals. FeLV-945 contains a unique sequence motif in the long terminal repeat (LTR) comprised of a single copy of transcriptional enhancer followed by a 21-bp sequence triplicated in tandem. The LTR is precisely conserved among independent cases of multicentric lymphoma, myeloproliferative disease and anemia in animals from the cohort. The 21-bp triplication was previously shown to act as a transcriptional enhancer preferentially in hematopoietic cells and to confer a replicative advantage. The objective of the present study was to examine the molecular mechanism by which the 21-bp triplication exerts its influence and the selective advantage responsible for its precise conservation. RESULTS: Potential binding sites for the transcription factor, c-Myb, were identified across the repeat junctions of the 21-bp triplication. Such sites would not occur in the absence of the repeat; thus, a requirement for c-Myb binding to the repeat junctions of the triplication would exert a selective pressure to conserve its sequence precisely. Electrophoretic mobility shift assays demonstrated specific binding of c-Myb to the 21-bp triplication. Reporter gene assays showed that the triplication-containing LTR is responsive to c-Myb, and that responsiveness requires the presence of both c-Myb binding sites. Results further indicated that c-Myb in complex with the 21-bp triplication recruits the transcriptional co-activator, CBP, a regulator of normal hematopoiesis. FeLV-945 replication was shown to be positively regulated by CBP in a manner dependent on the presence of the 21-bp triplication. CONCLUSION: Binding sites for c-Myb across the repeat junctions of the 21-bp triplication may account for its precise conservation in the FeLV-945 LTR. c-Myb binding and CBP recruitment to the LTR positively regulated virus production, and thus may be responsible for the replicative advantage conferred by the 21-bp triplication. Considering that CBP is present in hematopoietic cells in limiting amounts, we hypothesize that FeLV-945 replication in bone marrow may influence CBP availability and thereby alter the regulation of CBP-responsive genes, thus contributing to altered hematopoiesis and consequent hematologic disease.  (+info)

Substitution of feline leukemia virus long terminal repeat sequences into murine leukemia virus alters the pattern of insertional activation and identifies new common insertion sites. (67/376)

The recombinant retrovirus, MoFe2-MuLV (MoFe2), was constructed by replacing the U3 region of Moloney murine leukemia virus (M-MuLV) with homologous sequences from the FeLV-945 LTR. NIH/Swiss mice neonatally inoculated with MoFe2 developed T-cell lymphomas of immature thymocyte surface phenotype. MoFe2 integrated infrequently (0 to 9%) near common insertion sites (CISs) previously identified for either parent virus. Using three different strategies, CISs in MoFe2-induced tumors were identified at six loci, none of which had been previously reported as CISs in tumors induced by either parent virus in wild-type animals. Two of the newly identified CISs had not previously been implicated in lymphoma in any retrovirus model. One of these, designated 3-19, encodes the p101 regulatory subunit of phosphoinositide-3-kinase-gamma. The other, designated Rw1, is predicted to encode a protein that functions in the immune response to virus infection. Thus, substitution of FeLV-945 U3 sequences into the M-MuLV long terminal repeat (LTR) did not alter the target tissue for M-MuLV transformation but significantly altered the pattern of CIS utilization in the induction of T-cell lymphoma. These observations support a growing body of evidence that the distinctive sequence and/or structure of the retroviral LTR determines its pattern of insertional activation. The findings also demonstrate the oligoclonal nature of retrovirus-induced lymphomas by demonstrating proviral insertions at CISs in subdominant populations in the tumor mass. Finally, the findings demonstrate the utility of novel recombinant retroviruses such as MoFe2 to contribute new genes potentially relevant to the induction of lymphoid malignancy.  (+info)

Prevalence of canine distemper virus, feline immunodeficiency virus and feline leukemia virus in captive African lions (Panthera leo) in Japan. (68/376)

Sero-prevalences of canine distemper virus (CDV), feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV) were evaluated in 20 captive lions in two Japanese zoos. Anti-CDV antibody was detected in 13 of 20 lions. We could pursue antibody responses against CDV in three lions back to 1996. Sera collected in 1996 were negative for anti-CDV antibody, therefore, all of them showed sero-conversion in 2000. This result suggested that the epidemic of CDV infection in this zoo might have happened between 1996 and 2000. The lions were also examined for FIV and FeLV infections. We had no evidence for FeLV infection but eight lions were sero-positive for anti-FIV antibody.  (+info)

Subtle mutational changes in the SU protein of a natural feline leukemia virus subgroup A isolate alter disease spectrum. (69/376)

FeLV-945 is a representative isolate of the natural feline leukemia virus (FeLV) variant predominant in non-T-cell malignant, proliferative, and degenerative diseases in a geographic cohort. The FeLV-945 surface glycoprotein (SU) is closely related to natural horizontally transmissible FeLV subgroup A (FeLV-A) but was found to differ from a prototype to a larger extent than the members of FeLV-A differ among themselves. The sequence differences included point mutations restricted largely to the functional domains of SU, i.e., VRA, VRB, and PRR. Despite the sequence differences in these critical domains, measurements of receptor utilization, including host range and superinfection interference, confirmed the assignment of FeLV-945 to subgroup A. Other proviruses isolated from the cohort contained similar sequence hallmarks and were assigned to FeLV subgroup A. A provirus from cat 1046 contained a histidine-to-proline change at SU residue 6 within an SPHQ motif that was previously identified as a critical mediator of fusion events during virus entry. The 1046 pseudotype virus entered cells only in the presence of the soluble cofactor FeLIX provided in trans, but it retained an ecotropic host range even in the presence of FeLIX. The mutational changes in FeLV-945 were shown to confer significant functional differences compared to prototype FeLV-A viruses. The substitution of FeLV-945 envelope gene sequences for FeLV-A/61E sequences conferred a small but statistically significant replicative advantage in some feline cells. Moreover, substitution of the unique FeLV-945 long terminal repeat and envelope gene for those of FeLV-A/61E altered the disease spectrum entirely, from a thymic lymphoma of a T-cell origin to an as yet uncharacterized multicentric lymphoma that did not contain T cells.  (+info)

Probing sequence variation in the receptor-targeting domain of feline leukemia virus envelope proteins with peptide display libraries. (70/376)

Determinants of cellular tropism and receptor targeting lie within a short peptide in the Vr1 region of the envelope (Env) proteins of feline leukemia virus (FeLV) subgroups A and C. Libraries of FeLV Env proteins with random amino acid substitutions in the peptide were screened for their ability to deliver a marker gene to D17 and AH927 cells. Screening on D17 canine cells yielded D17-specific Env proteins that used the FeLV-C receptor. Screening on AH927 cells yielded Env proteins with a broader host range, with maximal titers on AH927 cells and similar or lower titers on other cells. These Env proteins used an unidentified non-FeLV receptor for entry. The A5 isolate obtained from the AH927 screen was readily concentrated to yield titers of 10(5) on human PC-3 prostate tumor cells. The sequence divergence observed among targeting peptides of library-selected Env proteins was greater than that found in parental FeLV isolates. Substitution analyses of a conserved R in the middle of the targeting peptide held constant during screening indicated that maximal titers were obtained only when R was present in both a D17 selected isolate and an AH927 selected isolate. The ability to isolate Env proteins with unique tropisms dependent on the cells on which the library is screened has direct implications for targeting gene delivery vectors.  (+info)

Re-examination of feline leukemia virus: host relationships using real-time PCR. (71/376)

The mechanisms responsible for effective vs. ineffective viral containment are central to immunoprevention and therapies of retroviral infections. Feline leukemia virus (FeLV) infection is unique as a naturally occurring, diametric example of effective vs. ineffective retroviral containment by the host. We developed a sensitive quantitative real-time DNA PCR assay specific for exogenous FeLV to further explore the FeLV-host relationship. By assaying p27 capsid antigen in blood and FeLV DNA in blood and tissues of successfully vaccinated, unsuccessfully vaccinated, and unvaccinated pathogen-free cats, we defined four statistically separable classes of FeLV infection, provisionally designated as abortive, regressive, latent, and progressive. These host-virus relationships were established by 8 weeks post-challenge and could be maintained for years. Real-time PCR methods offer promise in gaining deeper insight into the mechanisms of FeLV infection and immunity.  (+info)

Insertional polymorphisms of endogenous feline leukemia viruses. (72/376)

The number, chromosomal distribution, and insertional polymorphisms of endogenous feline leukemia viruses (enFeLVs) were determined in four domestic cats (Burmese, Egyptian Mau, Persian, and nonbreed) using fluorescent in situ hybridization and radiation hybrid mapping. Twenty-nine distinct enFeLV loci were detected across 12 of the 18 autosomes. Each cat carried enFeLV at only 9 to 16 of the loci, and many loci were heterozygous for presence of the provirus. Thus, an average of 19 autosomal copies of enFeLV were present per cat diploid genome. Only five of the autosomal enFeLV sites were present in all four cats, and at only one autosomal locus, B4q15, was enFeLV present in both homologues of all four cats. A single enFeLV occurred in the X chromosome of the Burmese cat, while three to five enFeLV proviruses occurred in each Y chromosome. The X chromosome and nine autosomal enFeLV loci were telomeric, suggesting that ectopic recombination between nonhomologous subtelomeres may contribute to enFeLV distribution. Since endogenous FeLVs may affect the infectiousness or pathogenicity of exogenous FeLVs, genomic variation in enFeLVs represents a candidate for genetic influences on FeLV leukemogenesis in cats.  (+info)