Role of Ras/ERK-dependent pathway in the erythroid differentiation of K562 cells. (49/3339)

The chronic myelogenous leukemic K562 cell line carrying Bcr-Abl tyrosine kinase is considered as pluripotent hematopoietic progenitor cells expressing markers for erythroid, granulocytic, monocytic, and megakaryocytic lineages. Here we investigated the signaling modulations required for induction of erythroid differentiation of K562 cells. When the K562 cells were treated with herbimycin A (an inhibitor of protein tyrosine kinase), ras antisense oligonucleotide, and PD98059 (a specific inhibitor of MEK), inhibition of ERK/MAPK activity and cell growth, and induction of erythroid differentiation were observed. The ras mutant, pZIPRas61leu-transfected cells, K562-Ras61leu, have shown a markedly decreased cell proliferation rate with approximately 2-fold doubling time, compared with the parental K562 cells, and about 60% of these cells have shown the phenotype of erythroid differentiation. In addition, herbimycin A inhibited the growth rate and increased the erythroid differentiation, but did not affect the elevated activity of ERK/MAPK in the K562-Ras61leu cells. On the other hand, effects of PD98059 on the growth and differentiation of K562-Ras61leu cells were biphasic. At low concentration of PD98059, which inhibited the elevated activity of ERK/MAPK to the level of parental cells, the growth rate increased and the erythroid differentiation decreased slightly, and at high concentration of PD98059, which inhibited the elevated activity of ERK/MAPK below that of the parental cells, the growth rate turned down and the erythroid differentiation was restored to the untreated control level. Taken together, these results suggest that an appropriate activity of ERK/MAPK is required to maintain the rapid growth and transformed phenotype of K562 cells.  (+info)

Modulation of CXCR4 expression and SDF-1alpha functional activity during differentiation of human monocytes and macrophages. (50/3339)

Chemoattraction of monocytes by the CXC chemokine stromal cell-derived factor-1alpha (SDF-1alpha) and its receptor CXCR4 may be involved in vascular diseases like atherosclerosis. We studied the regulation of CXCR4 transcription and SDF-1-induced functional responses in human monocytes during their differentiation in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF), oxidized low-density lipoprotein (Ox-LDL), and unmodified LDL. Our results reveal that the rapid decline of SDF-1-mediated [Ca2+]i influx after monocyte isolation is followed by a gradual functional restoration and a concomitant reexpression of CXCR4 mRNA over time. A further three- to fourfold induction of CXCR4 mRNA occurred in macrophage-derived foam cells on treatment with Ox-LDL. HL-60 cells induced with phorbol myristate acetate (PMA) showed a rapid fourfold stimulation of CXCR4 mRNA within 1 h, declining to barely detectable levels at 3 h, with eventual restoration over time, mirroring the expression pattern in monocytes. Surface expression of CXCR4 is maintained in HL-60 cells during PMA-induced differentiation, as demonstrated by flow cytometry. GM-CSF had no effect on CXCR4 mRNA in HL-60 cells and does not cause its down-regulation in human macrophages.  (+info)

Preferential uptake and accumulation of oxidized vitamin C by THP-1 monocytic cells. (51/3339)

THP-1 cells preferentially accumulate vitamin C in its oxidized form. The uptake displays first-order kinetics and leads to a build-up of an outward concentration gradient which is stable in the absence of extracellular vitamin. The transport is faster than reduction by extracellular glutathione or by added cytosolic extract, and glutathione-depleted cells show the same uptake rates as control cells. In addition, energy depletion or oxidation of intracellular sulfhydryls does not inhibit accumulation of ascorbate. The accumulation, however, always occurs in the reduced form. The affinity for dehydroascorbate is lower (Km 450 microM vs 60 microM) than for reduced ascorbate, but the maximal rate is more than 30 times higher (581 compared to 19 pmol.min-1 per 106 cells), and it is independent of sodium, whereas the uptake of ascorbate is not. The sodium gradient also allows accumulation of reduced ascorbate. Inhibitors of glucose transport by the GLUT-1 transporter also inhibit uptake of dehydroascorbate (DHA), but there are some inconsistencies, because the Ki-values are higher than reported for the isolated transporter and one inhibitor (deoxyglucose) is noncompetitive. The preferential uptake of the dehydro-form of the vitamin may be useful for situations where this short-lived metabolite is formed by oxidation in the environment.  (+info)

CD8(+) minor histocompatibility antigen-specific cytotoxic T lymphocyte clones eliminate human acute myeloid leukemia stem cells. (52/3339)

Effective immunotherapy for human leukemia based on infusions of T lymphocytes requires the identification of effector T cells that target the leukemic stem cell. The transplantation of human acute myeloid leukemia into nonobese diabetic/severe combined immune deficient (SCID) mice has identified a rare leukemic progenitor termed the SCID leukemia-initiating cell, which is present in low frequency in the leukemic population and is essential for establishing leukemic hematopoiesis. Thus, this transplant model may be ideally suited to identify effector T cells with antileukemic activity. We report that CD8(+) cytotoxic T lymphocyte (CTL) clones specific for minor histocompatibility antigens inhibit the engraftment of human acute myeloid leukemia cells in nonobese diabetic/SCID mice and demonstrate that this inhibition is mediated by direct CTL recognition of SCID leukemia-initiating cells. These results indicate that CD8(+) minor histocompatibility antigen-specific CTL may be mediators of the graft-versus-leukemia effect associated with allogeneic hematopoietic cell transplantation and provide an experimental model to identify and select T cell clones for immunotherapy to prevent or treat relapse after allogeneic hematopoietic cell transplantation.  (+info)

Quantity and origin of transplanted autologous blood cells are independent factors associated with speed of postransplant hematological reconstitution. (53/3339)

AIM: Multivariate analysis of the prognostic significance of clinical and laboratory parameters on hematological recovery after autologous hematopoietic stem cell transplantation. METHODS: Sixty-two patients suffering from hematological and non-hematological malignancies entered the study. After conditioning therapy, 28 patients received bone marrow stem cells, 21 received peripheral blood stem cells, and 13 received both. The dynamic of hematological engraftment was calculated as recovery probability of leukocytes and neutrophils. Statistics was done using Kaplan-Meier method and multivariate Cox's proportional regression. RESULTS: Numerous clinical and laboratory parameters correlated with hematological recovery, but only two variables were found to be independently associated. Faster reconstitution correlated with greater number of progenitors and patients who received bone marrow cells recovered significantly later than others. Faster recovery could be expected in patient s receiving >13x10(4) CFU-GM/kg body weight, and significantly slower in those receiving <8.5x10(4) CFU-GM/kg. CONCLUSION: The quantity of progenitor cells and transplant type are variables significantly associated with the speed of postransplant engraftment, but these two parameters are mutually independent. The number of stem cells estimated by CFU-GM assay is a good and reliable routine test for predicting hematopoietic recovery.  (+info)

Peripheral blood stem cell transplantation as an alternative to autologous marrow transplantation in the treatment of acute myeloid leukemia? (54/3339)

The clinical use of autologous marrow transplantation in acute myeloid leukemia (AML) has been hampered by the inability to collect adequate numbers of cells after remission induction chemotherapy and the notably delayed hematopoietic regeneration following autograft reinfusion. Here we present a study in which the feasibility of mobilizing stem cells was investigated in newly diagnosed AML. Among 96 AML patients, 76 patients (79%) entered complete remission. Mobilization was undertaken with low dose and high dose schedules of G-CSF in 63 patients, and 54 patients (87%) were leukapheresed. A median of 2.0 x 10(6) CD34+ cells/kg (range 0.1-72.0) was obtained in a median of three leukaphereses following a low dose G-CSF schedule (150 microg/m2) during an average of 20 days. Higher dose regimens of G-CSF (450 microg/m2 and 600 microg/m2) given during an average of 11 days resulted in 28 patients in a yield of 3.6 x 10(6) CD34+ cells/kg (range 0-60.3) also obtained following three leukaphereses. The low dose and high dose schedules of G-CSF permitted the collection of 2 x 10(6) CD34-positive cells in 46% and 79% of cases respectively (P = 0.01). Twenty-eight patients were transplanted with a peripheral blood stem cell (PBSC) graft and hemopoietic repopulation was compared with the results of a previous study with autologous bone marrow. Recovery of granulocytes (>0.5 x 10(9)/l, 17 vs 37 days) and platelets (>20 x 10(9)/l; 26 vs 96 days) was significantly faster after peripheral stem cell transplantation compared to autologous bone marrow transplantation. These results demonstrate the feasibility of PBSCT in the majority of cases with AML and the potential advantage of this approach with respect to hemopoietic recovery.  (+info)

Simultaneous activity of MRP1 and Pgp is correlated with in vitro resistance to daunorubicin and with in vivo resistance in adult acute myeloid leukemia. (55/3339)

In adult acute myeloid leukemia (AML), the weight of the contribution of the combined activity of Pgp and MRP1 to drug resistance is not known. To address this question, we compared the activity of these proteins to the in vitro resistance to daunorubicin (DNR), etoposide, and cytosine arabinoside (Ara-C), using the calcein-AM uptake and the 3-[4, 5-di-methyl-thiazol-2, 5-diphenyl] tetrazolium bromide (MTT) assay in 80 adult AML patients. We found no correlation or only a weak correlation between the in vitro drug resistance to DNR and etoposide and MRP1 or Pgp expression or function when tested separately. However, a strong correlation was observed between the simultaneous activity of MRP1 and Pgp (quantified as the modulation of calcein-AM uptake by cyclosporin A and probenecid) and the LC50 of DNR (r =.77, P <.0001). This emphasized the role of these two proteins, not separately, but together in the resistance to DNR. In contrast, Mvp/LRP expression did not correlate with the LC50 of DNR. A high level of simultaneous activity of Pgp and MRP1 was predictive of a poor treatment outcome (for achievement of CR [P =.008], duration of relapse-free survival [RFS; P =.01], and duration of overall survival [OS; P =.02]). In addition, high LC50 of DNR and high LC50 of etoposide together were also predictive of a poor treatment outcome (for duration of RFS [P =.02] and duration of OS [P =.02]). The unfavorable cytogenetic category was more closely associated with the combined activity of both MRP1 and Pgp (P =.002) than with the activity of Pgp or MRP1 separately. This could explain the poor prognosis and the in vitro resistance to daunorubicin in this group of patients. These data suggest that treatment outcome may be improved when cellular DNR and etoposide resistance can be circumvented or modulated. Modulation of not only Pgp but also MRP1 could be essential to attain this aim in adult AML.  (+info)

Frequency and clinical significance of the expression of the multidrug resistance proteins MDR1/P-glycoprotein, MRP1, and LRP in acute myeloid leukemia: a Southwest Oncology Group Study. (56/3339)

Therapeutic resistance is a major obstacle in the treatment of acute myeloid leukemia (AML). Such resistance has been associated with rapid drug efflux mediated by the multidrug resistance gene 1 (MDR1; encoding P-glycoprotein) and more recently with expression of other novel proteins conferring multidrug resistance such as MRP1 (multidrug resistance-associated protein 1) and LRP (lung resistance protein). To determine the frequency and clinical significance of MDR1, MRP1, and LRP in younger AML patients, we developed multiparameter flow cytometric assays to quantify expression of these proteins in pretreatment leukemic blasts from 352 newly diagnosed AML patients (median age, 44 years) registered to a single clinical trial (SWOG 8600). Protein expression was further correlated with functional efflux by leukemic blasts [assessed using two substrates: Di(OC)(2) and Rhodamine 123] and with the ability of MDR-reversing agents to inhibit efflux in vitro. MDR1/P-glycoprotein expression, which was highly correlated with cyclosporine-inhibited efflux, was noted in only 35% of these younger AML patients, distinctly lower than the frequency of 71% we previously reported in AML in the elderly (Blood 89:3323, 1997). Interestingly, MDR1 expression and functional drug efflux increased with patient age, from a frequency of only 17% in patients less than 35 years old to 39% in patients aged 50 years (P =.010). In contrast, MRP1 was expressed in only 10% of cases and decreased with patient age (P =. 024). LRP was detected in 43% of cases and increased significantly with increasing white blood cell counts (P =.0015). LRP was also marginally associated with favorable cytogenetics (P =.012) and French-American-British (FAB) AML FAB subtypes (P =.013), being particularly frequent in M4/M5 cases. Only MDR1/P-glycoprotein expression and cyclosporine-inhibited efflux were significantly associated with complete remission (CR) rate (P(MDR1) =.012; P(efflux) =.039) and resistant disease (RD; P(MDR1) =.0007; P(efflux) =.0092). No such correlations were observed for MRP1 (P(CR) =.93; P(RD) =.55) or LRP (P(CR) =.50; P(RD) =.53). None of these parameters were associated with overall or relapse-free survival. Unexpectedly, a distinct and nonoverlapping phenotype was detected in 18% of these cases: cyclosporine-resistant efflux not associated with MDR1, MRP1, or LRP expression, implying the existence of other as yet undefined efflux mechanisms in AML. In summary, MDR1 is less frequent in younger AML patients, which may in part explain their better response to therapy. Neither MRP1 nor LRP are significant predictors of outcome in this patient group. Thus, inclusion of MDR1-modulators alone may benefit younger AML patients with MDR1(+) disease.  (+info)