Transcriptional inhibition of p53 by the MLL/MEN chimeric protein found in myeloid leukemia. (25/3339)

The t(11;19)(q23;p13.1) translocation is frequently found in adult myeloid leukemia. In the MLL/MEN fusion protein generated by this translocation, most of the coding region of the MEN protein, an RNA polymerase II elongation factor, is fused to the N-terminal third of the MLL protein, a possible transcriptional regulator. However, the molecular mechanism of leukemogenesis by the fusion protein remains unclear. We investigated the effects of the fusion protein on p53 function using luciferase assays. Overexpression of the fusion protein suppressed the transactivation ability of p53. This negative effect of the fusion protein on p53 function was dependent on the region derived from MEN. Moreover, p53 coimmunoprecipitated with MLL/MEN as well as MEN, suggesting that the fusion protein binds to p53 through the MEN region. We found that MEN binding to p53 was mediated by its N-terminal region and repression of p53 transcriptional activity was mediated by its C-terminal region. We also found that these two functional regions were essential for the transformation of Rat1 cells mediated by MEN. Although we could not demonstrate a functional difference between MLL/MEN and MEN in this study, these data suggest that the MLL/MEN chimeric transcriptional regulator may exert its oncogenic activity by inhibiting the function of the p53 tumor-suppressor protein by binding to it. Our findings provide a novel insight into the leukemogenic mechanism exerted by the t(11;19)(q23;p13.1) translocation.  (+info)

Mrvi1, a common MRV integration site in BXH2 myeloid leukemias, encodes a protein with homology to a lymphoid-restricted membrane protein Jaw1. (26/3339)

Ecotropic MuLVs induce myeloid leukemia in BXH2 mice by insertional mutagenesis of cellular proto-oncogenes or tumor suppressor genes. Disease genes can thus be identified by viral tagging as common sites of viral integration in BXH2 leukemias. Previous studies showed that a frequent common integration site in BXH2 leukemias is the Nf1 tumor suppressor gene. Unexpectedly, about half of the viral integrations at Nf1 represented a previously undiscovered defective nonecotropic virus, termed MRV. Because other common integration sites in BXH2 leukemias encoding proto-oncogenes contain ecotropic rather than MRV viruses, it has been speculated that MRV viruses may selectively target tumor suppressor genes. To determine if this were the case, 21 MRV-positive BXH2 leukemias were screened for new MRV common integration sites. One new site, Mrvi1 was identified that was disrupted by MRV in two of the leukemias. Ecotropic virus did not disrupt Mrvi1 in 205 ecotropic virus-positive leukemias, suggesting that Mrvi1 is specifically targeted by MRV. Mrvi1 encodes a novel protein with homology to Jaw1, a lymphoid restricted type II membrane protein that localizes to the endoplasmic reticulum. MRV integration occurs at the 5' end of the gene between two differentially used promoters. Within hematopoietic cells, Mrvi1 expression is restricted to megakaryocytes and some myeloid leukemias. Like Jaw1, which is down-regulated during lymphoid differentiation, Mrv1 is downregulated during monocytic differentiation of BXH2 leukemias. Taken together, these data suggest that MRV integration at Mrvi1 induces myeloid leukemia by altering the expression of a gene important for myeloid cell growth and/or differentiation. Experiments are in progress to test whether Mrvi1 is a tumor suppressor gene.  (+info)

Multiple signals mediate proliferation, differentiation, and survival from the granulocyte colony-stimulating factor receptor in myeloid 32D cells. (27/3339)

Granulocyte colony-stimulating factor (G-CSF) regulates neutrophil production through activation of its cognate receptor, the G-CSF-R. Previous studies with deletion mutants have shown that the membrane-proximal cytoplasmic domain of the receptor is sufficient for mitogenic signaling, whereas the membrane-distal domain is required for differentiation signaling. However, the function of the four cytoplasmic tyrosines of the G-CSF-R in the control of proliferation, differentiation, and survival has remained unclear. Here we investigated the role of these tyrosines by expressing a tyrosine "null" mutant and single tyrosine "add back" mutants in maturation-competent myeloid 32D cells. Clones expressing the null mutant showed only minimal proliferation and differentiation, with survival also reduced at low G-CSF concentrations. Analysis of clones expressing the add-back mutants revealed that multiple tyrosines contribute to proliferation, differentiation, and survival signals from the G-CSF-R. Analysis of signaling pathways downstream of these tyrosines suggested a positive role for STAT3 activation in both differentiation and survival signaling, whereas SHP-2, Grb2 and Shc appear important for proliferation signaling. In addition, we show that a tyrosine-independent "differentiation domain" in the membrane-distal region of the G-CSF-R appears necessary but not sufficient for mediating neutrophilic differentiation in these cells.  (+info)

Apoptosis induction via microtubule disassembly by an antitumour compound, pironetin. (28/3339)

We reported previously that pironetin and its derivatives were potent inhibitors of cell cycle progression at the M-phase and showed antitumour activity against a murine tumour cell line, P388 leukaemia, transplanted in mice. In this paper, we investigated the mechanism of action of pironetins in antitumour activity and cell cycle arrest at the M-phase. As reported previously for murine leukaemia P388 cells, pironetin showed antitumour activity in a dose-dependent manner in the human leukaemia cell line HL-60. Since DNA fragmentation was observed in both P388 and HL-60 cells, the antitumour activity of pironetin is thought to be due to the induction of apoptosis. Pironetin also induced the rapid phosphorylation of Bcl-2 before formation of the DNA ladder in HL-60 cells, as seen with several tubulin binders. These results suggest that the antitumour activity of pironetin is due to apoptosis caused by the phosphorylation of Bcl-2, and that pironetin targets the microtubules. Pironetin and demethylpironetin exhibited reversible disruption of the cellular microtubule network in normal rat fibroblast 3Y1 cells. However, epoxypironetin, which contains epoxide instead of the double bond of pironetin, showed only weak activity. Since the concentrations that inhibit cell cycle progression at the M-phase were the same as those for disruption of the microtubule network, it was suggested that the mitotic arrest induced by pironetin was the result of the loss of the mitotic spindle. These compounds also inhibited the microtubule-associated protein-induced and glutamate-induced tubulin assembly in vitro. Pironetin inhibited the binding of [3H]vinblastine, but not that of [3H]colchicine, to tubulin, and the Kd values revealed that the affinity of pironetin for tubulin is stronger than that of vinblastine. These results suggest that pironetins are novel antitumour agents which inhibit microtubule assembly.  (+info)

Improved outcome with T-cell-depleted bone marrow transplantation for acute leukemia. (29/3339)

PURPOSE: To eliminate the risk of rejection and lower the risk of relapse after T-cell-depleted bone marrow transplants in acute leukemia patients, we enhanced pretransplant immunosuppression and myeloablation. PATIENTS AND METHODS: Antithymocyte globulin and thiotepa were added to standard total-body irradiation/cyclophosphamide conditioning. Donor bone marrows were depleted ex vivo of T lymphocytes by soybean agglutination and E-rosetting. This approach was tested in 54 consecutive patients with acute leukemia who received transplants from HLA-identical sibling donors or, in two cases, from family donors mismatched at D-DR. No posttransplant immunosuppressive treatment was given as graft-versus-host disease (GVHD) prophylaxis. RESULTS: Neither graft rejection nor GVHD occurred. Transplant-related deaths occurred in six (16.6%) of 36 patients in remission and in seven (38.8%) of 18 patients in relapse at the time of transplantation. The probability of relapse was .12 (95% confidence interval [CI], 0 to .19) for patients with acute myeloid leukemia and .28 (95% CI, .05 to .51) for patients with acute lymphoblastic leukemia who received transplants at the first or second remission. At a median follow-up of 6.9 years (minimum follow-up, 4.9 years), event-free survival for patients who received transplants while in remission was .74 (95% CI, .54 to .93) for acute myeloid leukemia patients and .59 (95% CI, .35 to .82) for acute lymphoblastic leukemia patients. All surviving patients have 100% performance status. CONCLUSION: Adding antithymocyte globulin and thiotepa to the conditioning regimen prevents rejection of extensively T-cell-depleted bone marrow. Even in the complete absence of GVHD, the leukemia relapse rate is not higher than in unmanipulated transplants.  (+info)

Myeloid malignancies induced by alkylating agents in Nf1 mice. (30/3339)

Therapy-related acute myeloid leukemia and myelodysplastic syndrome (t-AML and MDS) are severe late complications of treatment with genotoxic chemotherapeutic agents. Children with neurofibromatosis type 1 (NF1) are predisposed to malignant myeloid disorders that are associated with inactivation of the NF1 tumor suppressor gene in the leukemic clone. Recent clinical data suggest that NF1 might be also associated with an increased risk of t-AML after treatment with alkyating agents. To test this hypothesis, we administered cyclophosphamide or etoposide to cohorts of wild-type and heterozygous Nf1 knockout mice. Cyclophosphamide exposure cooperated strongly with heterozygous inactivation of Nf1 in myeloid leukemogenesis, while etoposide did not. Somatic loss of the normal Nf1 allele correlated with clinical disease and was more common in 129/Sv mice than in 129/Sv x C57BL/6 animals. Leukemic cells showing loss of heterozygosity at Nf1 retained a structural allele on each chromosome 11 homolog. These studies establish a novel in vivo model of alkylator-induced myeloid malignancy that will facilitate mechanistic and translational studies.  (+info)

Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: a phase I study of an anti-CD33 calicheamicin immunoconjugate. (31/3339)

Leukemic blast cells express the CD33 antigen in most patients with acute myeloid leukemia (AML), but this antigen is not expressed by hematopoietic stem cells. We conducted a study to determine whether normal hematopoiesis could be restored in patients with AML by selective ablation of cells expressing the CD33 antigen. In a dose escalation study, 40 patients with relapsed or refractory CD33(+) AML were treated with an immunoconjugate (CMA-676) consisting of humanized anti-CD33 antibody linked to the potent antitumor antibiotic calicheamicin. The capacity of leukemic cells to efflux 3, 3'-diethyloxacarbocyanine iodide (DiOC2) was used to estimate pretreatment functional drug resistance. Leukemia was eliminated from the blood and marrow of 8 (20%) of the 40 patients; blood counts returned to normal in three (8%) patients. A high rate of clinical response was observed in leukemias characterized by low dye efflux in vitro. Infusions of CMA-676 were generally well tolerated, and a postinfusion syndrome of fever and chills was the most common toxic effect. Two patients who were treated at the highest dose level (9 mg/m2) were neutropenic >5 weeks after the last dose of CMA-676. These results show that an immunoconjugate targeted to CD33 can selectively ablate malignant hematopoiesis in some patients with AML.  (+info)

MSF (MLL septin-like fusion), a fusion partner gene of MLL, in a therapy-related acute myeloid leukemia with a t(11;17)(q23;q25). (32/3339)

MLL (ALL1, Htrx, HRX), which is located on chromosome band 11q23, frequently is rearranged in patients with therapy-related acute myeloid leukemia who previously were treated with DNA topoisomerase II inhibitors. In this study, we have identified a fusion partner of MLL in a 10-year-old female who developed therapy-related acute myeloid leukemia 17 months after treatment for Hodgkin's disease. Leukemia cells of this patient had a t(11;17)(q23;q25), which involved MLL as demonstrated by Southern blot analysis. The partner gene was cloned from cDNA of the leukemia cells by use of a combination of adapter reverse transcriptase-PCR, rapid amplification of 5' cDNA ends, and BLAST database analysis to identify expressed sequence tags. The full-length cDNA of 2.8 kb was found to be an additional member of the septin family, therefore it was named MSF (MLL septin-like fusion). Members of the septin family conserve the GTP binding domain, localize in the cytoplasm, and interact with cytoskeletal filaments. A major 4-kb transcript of MSF was expressed ubiquitously; a 1.7-kb transcript was found in most tissues. An additional 3-kb transcript was found only in hematopoietic tissues. By amplification with MLL exon 5 forward primer and reverse primers in MSF, the appropriately sized products were obtained. MSF is highly homologous to hCDCrel-1, which is a partner gene of MLL in leukemias with a t(11;22)(q23;q11.2). Further analysis of MSF may help to delineate the function of MLL partner genes in leukemia, particularly in therapy-related leukemia.  (+info)