Loading...
(1/181) Cytoplasmic domains of the leukemia inhibitory factor receptor required for STAT3 activation, differentiation, and growth arrest of myeloid leukemic cells.

Leukemia inhibitory factor (LIF) induces growth arrest and macrophage differentiation of mouse myeloid leukemic cells through the functional LIF receptor (LIFR), which comprises a heterodimeric complex of the LIFR subunit and gp130. To identify the regions within the cytoplasmic domain of LIFR that generate the signals for growth arrest, macrophage differentiation, and STAT3 activation independently of gp130, we constructed chimeric receptors by linking the transmembrane and intracellular regions of mouse LIFR to the extracellular domains of the human granulocyte macrophage colony-stimulating factor receptor (hGM-CSFR) alpha and betac chains. Using the full-length cytoplasmic domain and mutants with progressive C-terminal truncations or point mutations, we show that the two membrane-distal tyrosines with the YXXQ motif of LIFR are critical not only for STAT3 activation, but also for growth arrest and differentiation of WEHI-3B D+ cells. A truncated STAT3, which acts in a dominant negative manner was introduced into WEHI-3B D+ cells expressing GM-CSFRalpha-LIFR and GM-CSFRbetac-LIFR. These cells were not induced to differentiate by hGM-CSF. The results indicate that STAT3 plays essential roles in the signals for growth arrest and differentiation mediated through LIFR.  (+info)

(2/181) Identification of a Leu-lle internalization motif within the cytoplasmic domain of the leukaemia inhibitory factor receptor.

Leukaemia inhibitory factor (LIF) signals via a heterodimeric receptor complex comprised of the LIF receptor (LIFR) and the interleukin (IL)-6 signal transducer gp130. Upon binding to its cognate receptor LIF is internalized. In this study, we show that the LIFR is endocytosed independently of gp130. By using a heterochimaeric receptor system we identified a dileucine-based internalization motif within the cytoplasmic domain of the LIFR. Our findings suggest that a heterodimeric LIFR/gp130 complex and homodimeric gp130/gp130 complex are endocytosed via distinct internalization signals.  (+info)

(3/181) The carboxyl-terminal domains of gp130-related cytokine receptors are necessary for suppressing embryonic stem cell differentiation. Involvement of STAT3.

Cell type-specific responses to the leukemia inhibitory factor (LIF)/interleukin 6 cytokine family are mediated by dimerization of the LIF receptor alpha-chain (LIFRalpha) with the signal transducer gp130 or of two gp130 molecules followed by activation of the JAK/STAT and Ras/mitogen-activated protein kinase cascades. In order to dissect the contribution of gp130 and LIFRalpha individually, chimeric molecules consisting of the extracellular domain of the granulocyte colony stimulating factor receptor (GCSF-R) and various mutant forms of the cytoplasmic domains of gp130 or LIFRalpha were expressed in embryonic stem (ES) cells to test for suppression of differentiation, or in a factor-dependent plasma cytoma cell line to assess for induction of proliferation. Carboxyl-terminal domains downstream of the phosphatase (SHP2)-binding sites were dispensable for mitogen-activated protein kinase activation and the transduction of proliferative signals. Moreover, carboxyl-terminal truncation mutants which lacked intact Box 3 homology domains showed decreased STAT3 activation, failed to induce Hck kinase activity and suppress ES cell differentiation. Moreover, STAT3 antisense oligonucleotides impaired LIF-dependent inhibition of differentiation. Substitution of the tyrosine residue within the Box 3 region of the GSCF-R abolished receptor-mediated suppression of differentiation without affecting the transduction of proliferative signals. Thus, distinct cytoplasmic domains within the LIFRalpha, gp130, and GCSF-R transduce proliferative and differentiation suppressing signals.  (+info)

(4/181) Complex conserved organization of the mammalian leukemia inhibitory factor gene: regulated expression of intracellular and extracellular cytokines.

Leukemia inhibitory factor (LIF) is a member of the IL-6 family of pleiotropic cytokines, which are extensively involved in modulating hematopoiesis and immunity. We have undertaken a detailed analysis of LIF genomic organization and gene transcription and investigated the proteins expressed from alternate transcripts. Previously unidentified LIF transcripts, containing alternate first exons spliced onto common second and third exons, were cloned from murine embryonic stem cells, human embryonal carcinoma cells, and primary porcine fibroblasts. Based on sequence homology and position within the genomic sequence, this confirmed the existence of the LIF-M transcript in species other than the mouse and identified a new class of transcript, designated LIF-T. Thus, a complex genomic organization of the LIF gene, conserved among eutherian mammals, results in the expression of three LIF transcripts (LIF-D, LIF-M, and LIF-T) differentially expressed from alternate promoters. The first exon of the LIF-T transcript contained no in-frame AUG, causing translation to initiate downstream of the secretory signal sequence at the first AUG in exon two, producing a truncated LIF protein that was localized within the cell. Enforced secretion of this protein demonstrated that it could act as a LIF receptor agonist. Regulated expression of biologically active intracellular and extracellular LIF cytokine could thus provide alternate mechanisms for the modulation of hematopoiesis and immune system function.  (+info)

(5/181) Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300.

The cytokines LIF (leukemia inhibitory factor) and BMP2 (bone morphogenetic protein-2) signal through different receptors and transcription factors, namely STATs (signal transducers and activators of transcription) and Smads. LIF and BMP2 were found to act in synergy on primary fetal neural progenitor cells to induce astrocytes. The transcriptional coactivator p300 interacts physically with STAT3 at its amino terminus in a cytokine stimulation-independent manner, and with Smad1 at its carboxyl terminus in a cytokine stimulation-dependent manner. The formation of a complex between STAT3 and Smad1, bridged by p300, is involved in the cooperative signaling of LIF and BMP2 and the subsequent induction of astrocytes from neural progenitors.  (+info)

(6/181) Receptor recognition sites of cytokines are organized as exchangeable modules. Transfer of the leukemia inhibitory factor receptor-binding site from ciliary neurotrophic factor to interleukin-6.

Interleukin-6 (IL-6) and ciliary neurotrophic factor (CNTF) are "4-helical bundle" cytokines of the IL-6 type family of neuropoietic and hematopoietic cytokines. IL-6 signals by induction of a gp130 homodimer (e.g. IL-6), whereas CNTF and leukemia inhibitory factor (LIF) signal via a heterodimer of gp130 and LIF receptor (LIFR). Despite binding to the same receptor component (gp130) and a similar protein structure, IL-6 and CNTF share only 6% sequence identity. Using molecular modeling we defined a putative LIFR binding epitope on CNTF that consists of three distinct regions (C-terminal A-helix/N-terminal AB loop, BC loop, C-terminal CD-loop/N-terminal D-helix). A corresponding gp130-binding site on IL-6 was exchanged with this epitope. The resulting IL-6/CNTF chimera lost the capacity to signal via gp130 on cells without LIFR, but acquired the ability to signal via the gp130/LIFR heterodimer and STAT3 on responsive cells. Besides identifying a specific LIFR binding epitope on CNTF, our results suggest that receptor recognition sites of cytokines are organized as modules that are exchangeable even between cytokines with limited sequence homology.  (+info)

(7/181) Binding of leukemia inhibitory factor (LIF) to mutants of its low affinity receptor, gp190, reveals a LIF binding site outside and interactions between the two cytokine binding domains.

The gp190 transmembrane protein, the low affinity receptor for the leukemia inhibitory factor (LIF), belongs to the hematopoietin family of receptors characterized by the cytokine binding domain (CBD). gp190 is one of the very few members of this family to contain two such domains. The membrane-proximal CBD (herein called D2) is separated from the membrane-distal one (called D1) by an immunoglobulin-like (Ig) domain and is followed by three fibronectin type III repeats. We used truncated gp190 mutants and a blocking anti-gp190 monoclonal antibody to study the role of these repeats in low affinity receptor function. Our results showed that the D1Ig region was involved in LIF binding, while D2 appeared to be crucial for the proper folding of D1, suggesting functionally important interactions between the two CBDs in the wild-type protein. In addition, a point mutation in the carboxyl terminus of the Ig region strongly impaired ligand binding. These findings suggest that at least two distinct sites, both located within the D1Ig region, are involved in LIF binding to gp190, and more generally, that ligand binding sites on these receptors may well be located outside the canonical CBDs.  (+info)

(8/181) Leukemia inhibitory factor and its receptor promote adipocyte differentiation via the mitogen-activated protein kinase cascade.

Extracellular factors and intracellular signaling pathways involved in early events of adipocyte differentiation are poorly defined. It is shown herein that expression of leukemia inhibitory factor (LIF) and LIF receptor is developmentally regulated during adipocyte differentiation. Preadipocytes secrete bioactive LIF, and an antagonist of LIF receptor inhibits adipogenesis. Genetically modified embryonic stem (ES) cells combined with culture conditions to commit stem cells into the adipocyte lineage were used to examine the requirement of LIF receptor during in vitro development of adipose cells. The capacity of embryoid bodies derived from lifr(-/-) ES cells to undergo adipocyte differentiation is dramatically reduced. LIF addition stimulates adipocyte differentiation of Ob1771 and 3T3-F442A preadipocytes and that of peroxisome proliferator-activated receptor gamma2 ligand-treated mouse embryonic fibroblasts. Expression of the early adipogenic transcription factors C/EBPbeta and C/EBPdelta is rapidly stimulated following exposure of preadipose cells to LIF. The selective inhibitors of mitogen-activated protein kinase kinase, i.e. PD98059 and U0126, inhibit LIF-induced C/EBP gene expression and prevent adipocyte differentiation induced by LIF. These results are in favor of a model that implicates stimulation of LIF receptor in the commitment of preadipocytes to undergo terminal differentiation by controlling the early expression of C/EBPbeta and C/EBPdelta genes via the mitogen-activated protein kinase cascade.  (+info)