Loading...
(1/945) Leukemia inhibitory factor and ciliary neurotrophic factor cause dendritic retraction in cultured rat sympathetic neurons.

Dendritic retraction occurs in many regions of the developing brain and also after neural injury. However, the molecules that regulate this important regressive process remain largely unknown. Our data indicate that leukemia inhibitory factor (LIF) and ciliary neurotrophic factor (CNTF) cause sympathetic neurons to retract their dendrites in vitro, ultimately leading to an approximately 80% reduction in the size of the arbor. The dendritic retraction induced by LIF exhibited substantial specificity because it was not accompanied by changes in cell number, in the rate of axonal growth, or in the expression of axonal cytoskeletal elements. An antibody to gp130 blocked the effects of LIF and CNTF, and both cytokines induced phosphorylation and nuclear translocation of stat3. Moreover, addition of soluble interleukin-6 (IL-6) receptor to the medium endowed IL-6 with the ability to cause dendritic regression. These data indicate that ligands activating the gp130 pathway have the ability to profoundly alter neuronal cell shape and polarity by selectively causing the retraction of dendrites.  (+info)

(2/945) Cytoplasmic domains of the leukemia inhibitory factor receptor required for STAT3 activation, differentiation, and growth arrest of myeloid leukemic cells.

Leukemia inhibitory factor (LIF) induces growth arrest and macrophage differentiation of mouse myeloid leukemic cells through the functional LIF receptor (LIFR), which comprises a heterodimeric complex of the LIFR subunit and gp130. To identify the regions within the cytoplasmic domain of LIFR that generate the signals for growth arrest, macrophage differentiation, and STAT3 activation independently of gp130, we constructed chimeric receptors by linking the transmembrane and intracellular regions of mouse LIFR to the extracellular domains of the human granulocyte macrophage colony-stimulating factor receptor (hGM-CSFR) alpha and betac chains. Using the full-length cytoplasmic domain and mutants with progressive C-terminal truncations or point mutations, we show that the two membrane-distal tyrosines with the YXXQ motif of LIFR are critical not only for STAT3 activation, but also for growth arrest and differentiation of WEHI-3B D+ cells. A truncated STAT3, which acts in a dominant negative manner was introduced into WEHI-3B D+ cells expressing GM-CSFRalpha-LIFR and GM-CSFRbetac-LIFR. These cells were not induced to differentiate by hGM-CSF. The results indicate that STAT3 plays essential roles in the signals for growth arrest and differentiation mediated through LIFR.  (+info)

(3/945) Leukemia inhibitory factor and oncostatin M stimulate collagenase-3 expression in osteoblasts.

Leukemia inhibitory factor (LIF) and oncostatin M (OSM) have multiple effects on skeletal remodeling. Although these cytokines modestly regulate collagen synthesis in osteoblasts, their effects on collagenase expression and collagen degradation are not known. We tested whether LIF and OSM regulate the expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in osteoblast-enriched cells isolated from fetal rat calvariae. LIF and OSM increased collagenase-3 (MMP-13) mRNA and immunoreactive protein levels in a time- and dose-dependent manner. LIF and OSM enhanced the rate of transcription of the collagenase gene and stabilized collagenase mRNA in transcriptionally arrested cells. LIF and OSM failed to regulate the expression of gelatinase A (MMP-2) and B (MMP-9). LIF and OSM modestly stimulated the expression of TIMP-1 but did not alter the expression of TIMP-2 and -3. In conclusion, LIF and OSM stimulate collagenase-3 and TIMP-1 expression in osteoblasts, and these effects may be involved in mediating the bone remodeling actions of these cytokines.  (+info)

(4/945) Interleukin-4 (IL-4), but not IL-10, regulates the synthesis of IL-6, IL-8 and leukemia inhibitory factor by human bone marrow stromal cells.

Leukemia inhibitory factor (LIF), interleukin 6 (IL-6) and IL-8 are important regulators of inflammation and hematopoiesis. Human bone marrow stromal cells regulate marrow hematopoiesis by secreting cytokines. By using reverse-transcriptase polymerase chain reaction (RT-PCR), we demonstrate that human bone marrow stromal cells constitutively express LIF, IL-6 and IL-8 transcripts. By using specific ELISAs, we found that their spontaneous productions of LIF, IL-6 and IL-8 are elevated in response to serum and after stimulation with the pro-inflammatory cytokines IL-1alpha and TNF-alpha. The anti-inflammatory cytokine IL-4 reduces their serum- and cytokine-induced LIF secretion. By contrast, IL-4 stimulates their serum- and IL-1alpha-induced IL-6 synthesis. IL-4 has no effect on the serum-induced IL-8 synthesis by marrow stromal cells, but stimulates their cytokine-induced IL-8 production. The anti-inflammatory cytokine IL-10 has no effect on the serum- and cytokine-induced LIF, IL-6 and IL-8 synthesis by bone marrow stromal cells. RT-PCR experiments reveal the presence of IL-4 receptor alpha-chain mRNA and IL-10 receptor mRNA in cultured bone marrow stromal cells. The differential regulation by IL-4 of two related cytokines, such as LIF and IL-6, and the enhanced effect of this 'anti-inflammatory' cytokine on IL-6 and IL-8 synthesis highlight the tightly controlled regulation and the complexity of the cytokine production within the human bone marrow.  (+info)

(5/945) Identification of a Leu-lle internalization motif within the cytoplasmic domain of the leukaemia inhibitory factor receptor.

Leukaemia inhibitory factor (LIF) signals via a heterodimeric receptor complex comprised of the LIF receptor (LIFR) and the interleukin (IL)-6 signal transducer gp130. Upon binding to its cognate receptor LIF is internalized. In this study, we show that the LIFR is endocytosed independently of gp130. By using a heterochimaeric receptor system we identified a dileucine-based internalization motif within the cytoplasmic domain of the LIFR. Our findings suggest that a heterodimeric LIFR/gp130 complex and homodimeric gp130/gp130 complex are endocytosed via distinct internalization signals.  (+info)

(6/945) The carboxyl-terminal domains of gp130-related cytokine receptors are necessary for suppressing embryonic stem cell differentiation. Involvement of STAT3.

Cell type-specific responses to the leukemia inhibitory factor (LIF)/interleukin 6 cytokine family are mediated by dimerization of the LIF receptor alpha-chain (LIFRalpha) with the signal transducer gp130 or of two gp130 molecules followed by activation of the JAK/STAT and Ras/mitogen-activated protein kinase cascades. In order to dissect the contribution of gp130 and LIFRalpha individually, chimeric molecules consisting of the extracellular domain of the granulocyte colony stimulating factor receptor (GCSF-R) and various mutant forms of the cytoplasmic domains of gp130 or LIFRalpha were expressed in embryonic stem (ES) cells to test for suppression of differentiation, or in a factor-dependent plasma cytoma cell line to assess for induction of proliferation. Carboxyl-terminal domains downstream of the phosphatase (SHP2)-binding sites were dispensable for mitogen-activated protein kinase activation and the transduction of proliferative signals. Moreover, carboxyl-terminal truncation mutants which lacked intact Box 3 homology domains showed decreased STAT3 activation, failed to induce Hck kinase activity and suppress ES cell differentiation. Moreover, STAT3 antisense oligonucleotides impaired LIF-dependent inhibition of differentiation. Substitution of the tyrosine residue within the Box 3 region of the GSCF-R abolished receptor-mediated suppression of differentiation without affecting the transduction of proliferative signals. Thus, distinct cytoplasmic domains within the LIFRalpha, gp130, and GCSF-R transduce proliferative and differentiation suppressing signals.  (+info)

(7/945) Critical role for STAT3 in murine pituitary adrenocorticotropin hormone leukemia inhibitory factor signaling.

Leukemia inhibitory factor (LIF) is a pleiotropic neuroimmune cytokine that promotes corticotroph cell differentiation and induces proopiomelanocortin (POMC) mRNA expression and adrenocorticotropin hormone (ACTH) secretion. However, molecular mechanisms for this induction remain elusive. We therefore developed ACTH-secreting AtT20 transformants for wild-type or mutated STAT3, a cytokine signaling molecule, to address whether STAT3 is a determinant of LIF-mediated ACTH regulation. We show that these mutants act in a dominant negative manner by blocking endogenous STAT3 tyrosine phosphorylation or STAT3 DNA binding. Attenuation of STAT3 activity in the dominant negative AtT20 clones prevented LIF from promoting transcriptional activation of the POMC promoter (2.1-fold), whereas this LIF action was enhanced (7.7-fold; p < 0.05) in wild-type STAT3-overexpressing clones in comparison to mock-transfected cells (4.5-fold). However, wild-type or dominant negative STAT3-overexpressing clones showed comparable (4-fold) POMC induction after treatment with cyclic adenosine monophosphate (cAMP), an alternate inducer of POMC transcription, indicating the STAT3 specificity for LIF signaling. Moreover, dominant negative inactivation of STAT3 activity resulted in abrogation of LIF-induced POMC mRNA levels and ACTH secretion, confirming the in vivo role of STAT3 in LIF-mediated corticotroph action. Chemical or molecular blockade of the mitogen-activated protein kinase pathway did not affect LIF-mediated corticotroph function. These results indicate that STAT3 is a critical intrapituitary component of the LIF-mediated neuroimmunoendocrine interface in corticotroph cells.  (+info)

(8/945) Complex conserved organization of the mammalian leukemia inhibitory factor gene: regulated expression of intracellular and extracellular cytokines.

Leukemia inhibitory factor (LIF) is a member of the IL-6 family of pleiotropic cytokines, which are extensively involved in modulating hematopoiesis and immunity. We have undertaken a detailed analysis of LIF genomic organization and gene transcription and investigated the proteins expressed from alternate transcripts. Previously unidentified LIF transcripts, containing alternate first exons spliced onto common second and third exons, were cloned from murine embryonic stem cells, human embryonal carcinoma cells, and primary porcine fibroblasts. Based on sequence homology and position within the genomic sequence, this confirmed the existence of the LIF-M transcript in species other than the mouse and identified a new class of transcript, designated LIF-T. Thus, a complex genomic organization of the LIF gene, conserved among eutherian mammals, results in the expression of three LIF transcripts (LIF-D, LIF-M, and LIF-T) differentially expressed from alternate promoters. The first exon of the LIF-T transcript contained no in-frame AUG, causing translation to initiate downstream of the secretory signal sequence at the first AUG in exon two, producing a truncated LIF protein that was localized within the cell. Enforced secretion of this protein demonstrated that it could act as a LIF receptor agonist. Regulated expression of biologically active intracellular and extracellular LIF cytokine could thus provide alternate mechanisms for the modulation of hematopoiesis and immune system function.  (+info)