Long-term CCK-leptin synergy suggests a role for CCK in the regulation of body weight. (25/5124)

The gut peptide CCK is a nutrient-related signal important to the control of food intake. In the present studies, we observed that a single intraperitoneal injection of CCK (1-2 microgram/kg) given 2-3 h after intracerebroventricular leptin (2-5 microgram) reduced body weight and chow intake over the ensuing 48 h more than did leptin alone. CCK alone had no effect on either 48-h chow intake or body weight but significantly reduced feeding during a 30-min sucrose test. However, reduction of 30-min sucrose intake by CCK was not enhanced by prior intracerebroventricular leptin. The present data suggest that CCK can contribute to the regulation of body weight when central leptin levels are elevated.  (+info)

Conjugated linoleic acid rapidly reduces body fat content in mice without affecting energy intake. (26/5124)

Recent reports have demonstrated that conjugated linoleic acid (CLA) has effects on body fat accumulation. In our previous work, CLA reduced body fat accumulation in mice fed either a high-fat or low-fat diet. Although CLA feeding reduced energy intake, the results suggested that some of the metabolic effects were not a consequence of the reduced food intake. We therefore undertook a study to determine a dose of CLA that would have effects on body composition without affecting energy intake. Five doses of CLA (0.0, 0.25, 0.50, 0.75, and 1.0% by weight) were studied in AKR/J male mice (n = 12/group; age, 39 days) maintained on a high-fat diet (%fat 45 kcal). Energy intake was not suppressed by any CLA dose. Body fat was significantly lower in the 0.50, 0.75, and 1.0% CLA groups compared with controls. The retroperitoneal depot was most sensitive to the effects of CLA, whereas the epididymal depot was relatively resistant. Higher doses of CLA also significantly increased carcass protein content. A time-course study of the effects of 1% CLA on body composition showed reductions in fat pad weights within 2 wk and continued throughout 12 wk of CLA feeding. In conclusion, CLA feeding produces a rapid, marked decrease in fat accumulation, and an increase in protein accumulation, at relatively low doses without any major effects on food intake.  (+info)

Lactation-dependent down regulation of leptin production in mouse mammary gland. (27/5124)

Lactation-dependent regulation of leptin expression in mouse mammary gland and parametrial adipose tissue was estimated by RT-PCR analysis for virgin, pregnant, lactating and post-lactating mice, and the serum and milk leptin levels of these mice were also determined by ELISA. Leptin gene expression in mammary gland as well as in adipose tissue was obviously detected before pregnancy, markedly decreased to 30-50% after parturition and kept at the low level during lactation period, and restored to the original level after weaning. The leptin concentration of milk collected just before weaning was about two-fold higher than that of the milk collected at mid-lactating stages. The serum leptin levels of the mid- and late-lactating mice were not significantly higher than those of non-pregnant mice. These results suggested that the lactation-induced down regulation of leptin was associated with autocrine/paracrine action of leptin in mammary and adipose tissues, and that the milk leptin, especially at the latter stages of lactation, was not only ascribed to diffusive transport from maternal blood stream, but also regional production and secretion by mammary epithelial cells. This possible production of leptin by mammary epithelial cells was further supported by the fact that leptin was expressed by cultured cells of mammary epithelial cell line, COMMA-1D, in a manner negatively dependent on the lactogenic hormones.  (+info)

Leptin concentrations in normal women following bilateral ovariectomy. (28/5124)

To study the relationships between gonadal steroids and leptin, 20 women with normal cycles were investigated during the postoperative period following a laparotomy. Fourteen women underwent bilateral ovariectomy plus total hysterectomy either in the mid- to late follicular phase (n = 7, group 1) or in the early to midluteal phase (n = 7, group 2). The remaining six of the 20 women underwent cholocystectomy in the early to midfollicular phase of the cycle and were used as controls (group 3). In all three groups, serum leptin values decreased rapidly up to post-operative day 4. Then, leptin values increased significantly only in group 3 (P < 0.05). Leptin values before and after the operation showed significant positive correlations with body mass index (BMI), oestradiol and progesterone. However, with multiple regression analysis, BMI was the only parameter significantly correlated with leptin in group 3 (days 0 and 4-7), whereas in groups 1 and 2 progesterone and BMI showed independent significant correlations with leptin (days 0 and 8, r = 0.601 and r = 0.602 respectively). These results demonstrate for the first time a significant reduction in leptin concentrations in normal women following bilateral ovariectomy. Although BMI seems to be the predominant factor, it is also suggested that oestradiol and progesterone may participate in the control of leptin production during the human menstrual cycle.  (+info)

Regulation of body weight in humans. (29/5124)

The mechanisms involved in body weight regulation in humans include genetic, physiological, and behavioral factors. Stability of body weight and body composition requires that energy intake matches energy expenditure and that nutrient balance is achieved. Human obesity is usually associated with high rates of energy expenditure. In adult individuals, protein and carbohydrate stores vary relatively little, whereas adipose tissue mass may change markedly. A feedback regulatory loop with three distinct steps has been recently identified in rodents: 1) a sensor that monitors the size of adipose tissue mass is represented by the amount of leptin synthesized by adipose cells (a protein encoded by the ob gene) which determines the plasma leptin levels; 2) hypothalamic centers, with specific leptin receptors, which receive and integrate the intensity of the signal; and 3) effector systems that influence the two determinants of energy balance, i.e., energy intake and energy expenditure. With the exception of a few very rare cases, the majority of obese human subjects have high plasma leptin levels that are related to the size of their adipose tissue mass. However, the expected regulatory responses (reduction in food intake and increase in energy expenditure) are not observed in obese individuals. Thus obese humans are resistant to the effect of endogenous leptin, despite unaltered hypothalamic leptin receptors. Whether defects in the leptin signaling cascade play a role in the development of human obesity is a field of great actual interest that needs further research. Present evidences suggest that genetic and environmental factors influence eating behavior of people prone to obesity and that diets that are high in fat or energy dense undermine body weight regulation by promoting an overconsumption of energy relative to need.  (+info)

Dietary vitamin A supplementation in rats: suppression of leptin and induction of UCP1 mRNA. (30/5124)

All-trans-retinoic acid (RA), an active metabolite of vitamin A, induces the gene expression of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) and suppresses leptin gene expression in white adipose tissue (WAT) when given as an acute dose. These contrasting effects of RA leave in doubt the overall effect of chronic RA or vitamin A supplementation on energy homeostasis. To investigate the effects of dietary vitamin A supplementation on leptin and UCP1 gene expression, rats were fed either a normal diet (2.6 retinol/kg diet) or a vitamin A-supplemented diet (129 mg retinol/kg diet) for 8 weeks, and adiposity, serum leptin levels, leptin mRNA levels in perirenal WAT, UCP1 and UCP2 mRNA levels in BAT, and beta3-adrenergic receptor mRNA levels in BAT and WAT were examined. Rats on both diets gained a similar amount of weight, but there was a small 9% decrease in the adiposity index in the vitamin A-supplemented rats. Dietary vitamin A supplementation increased UCP1 gene expression in BAT by 31%, but suppressed leptin gene expression by 44% and serum leptin levels by 65%. UCP2 and beta3-adrenergic receptor gene expression in BAT and perirenal WAT were unchanged by the vitamin A diet. These data suggest that dietary vitamin A has a role in regulating energy homeostasis by enhancing UCP1 gene expression and decreasing serum leptin levels.  (+info)

Reproductive, metabolic, and endocrine responses to feed restriction and GnRH treatment in primiparous, lactating sows. (31/5124)

The current experiment was carried out to determine whether exogenous GnRH treatment in primiparous, lactating sows undergoing feed restriction would improve reproductive performance after weaning. Sows were allocated to one of three treatments: AA sows (n = 8) were fed to appetite throughout a 28-d lactation, AR (n = 12) and AR + GnRH (n = 12) sows were fed as AA sows from farrowing to d 21 of lactation, and feed intake was reduced to 50% of the ad libitum intakes from d 22 to 28. The AR + GnRH sows received 800 ng of GnRH i.v. every 6 h from d 22 to 28 of lactation, and AA and AR sows received saline. Sow weight, backfat, and litter weight were recorded weekly. Within 2 d after farrowing, litter size was standardized to 8 to 10. At d 17 of lactation, an indwelling jugular catheter was surgically implanted in each sow. Blood samples were taken for characterization of plasma LH, FSH, insulin, IGF-I, and leptin by RIA at d 21 and before and after weaning on d 28 of lactation. After weaning, all sows were given ad libitum access to feed, checked for onset of standing estrus twice daily with mature vasectomized boars, and inseminated 12 and 24 h after onset of standing estrus with pooled semen from the same fertile boars (3 x 10(9) sperm/AI). After breeding, feed allowance was reduced to NRC (1988) requirements for gestation. At d 28 +/- 3 of gestation, sows were killed and ovulation rate and embryo survival were determined. Restricted sows lost more weight during lactation than AA sows (P < .02). During the period of feed restriction, plasma IGF-I and postprandial insulin and leptin in AR and AR + GnRH sows, and LH pulse frequency in AR sows, were lower than those in AA sows (P < .04). Associations (P < .004) between plasma insulin and leptin and between leptin and mean LH concentrations were established. The LH pulse frequency in AR + GnRH sows did not differ from that in AA sows before weaning. After weaning, maximum, mean, and minimum LH concentrations in the AA and AR sows, and FSH concentrations in AR sows, increased (P < .05) in response to weaning. Paradoxically, GnRH treatment in lactation seemed to suppress the expected LH and FSH responses to weaning. Ovulation rate and embryo survival were not different among the three groups. In conclusion, although exogenous GnRH therapy restored LH secretion in feed-restricted sows, it did not improve overall reproductive performance.  (+info)

Regulation of serum leptin levels by gonadal function in rats. (32/5124)

The aim of this study was to investigate the regulation of serum leptin levels by gender and gonadal steroid milieu. Thus, we measured serum leptin levels by radioimmunoassay in (a) intact male and female rats, (b) female rats at different stages of the estrous cycle and (c) ovariectomized or orchidectomized rats. Gonadectomized groups were or were not implanted with silastic capsules (10 or 30 mm in length, 1.519mm internal diameter; 3.06 mm external diameter) containing estradiol or testosterone and decapitated two weeks later. We found (i) intact female rats weighing 50 g, 250 g and 300 g exhibited higher serum leptin concentrations than intact male rats of similar body weight; (ii) leptin concentrations were not affected by the phase of the estrous cycle; (iii) two weeks after gonadectomy serum leptin concentrations increased in both male (from 4.47+/-1.87 to 8.76+/-1.24 ng/ml) and female (from 1.97+/-0.46 to 5.29+/-0.51 ng/ml) rats. The ovariectomy-induced increase in serum leptin levels was not dependent, at least completely, on changes in body weight since it could be observed when comparisons were made between ovariectomized rats and intact rats in estrus matched for body weight. In contrast the effect of orchidectomy on serum leptin levels appears to be dependent on changes in body weight since it was no longer observed when comparisons were made with a group of intact male rats matched for body weight. In conclusion, these results suggest that serum leptin concentrations are controlled by gonadal function either directly or as a consequence of changes in body weight.  (+info)