Analysis of Medicago truncatula nodule expressed sequence tags. (1/107)

Systematic sequencing of expressed sequence tags (ESTs) can give a global picture of the assembly of genes involved in the development and function of organs. Indeterminate nodules representing different stages of the developmental program are especially suited to the study of organogenesis. With the vector lambdaHybriZAP, a cDNA library was constructed from emerging nodules of Medicago truncatula induced by Sinorhizobium meliloti. The 5' ends of 389 cDNA clones were sequenced, then these ESTs were analyzed both by sequence homology search and by studying their expression in roots and nodules. Two hundred fifty-six ESTs exhibited significant similarities to characterized data base entries and 40 of them represented 26 nodulin genes, while 133 had no similarity to sequences with known function. Only 60 out of the 389 cDNA clones corresponded to previously submitted M. truncatula EST sequences. For 117 cDNAs, reverse Northern (RNA) hybridization with root and nodule RNA probes revealed enhanced expression in the nodule, 48 clones are likely to code for novel nodulins, 33 cDNAs are clones of already known nodulin genes, and 36 clones exhibit similarity to other characterized genes. Thus, systematic analysis of the EST sequences and their expression patterns is a powerful way to identify nodule-specific and nodulation-related genes.  (+info)

Casuarina glauca prenodule cells display the same differentiation as the corresponding nodule cells. (2/107)

Recent phylogenetic studies have implied that all plants able to enter root nodule symbioses with nitrogen-fixing bacteria go back to a common ancestor (D.E. Soltis, P.S. Soltis, D.R. Morgan, S.M. Swensen, B.C. Mullin, J.M. Dowd, and P.G. Martin, Proc. Natl. Acad. Sci. USA, 92:2647-2651, 1995). However, nodules formed by plants from different groups are distinct in nodule organogenesis and structure. In most groups, nodule organogenesis involves the induction of cortical cell divisions. In legumes these divisions lead to the formation of a nodule primordium, while in non-legumes they lead to the formation of a so-called prenodule consisting of infected and uninfected cells. Nodule primordium formation does not involve prenodule cells, and the function of prenodules is not known. Here, we examine the differentiation of actinorhizal prenodule cells in comparison to nodule cells with regard to both symbionts. Our findings indicate that prenodules represent primitive symbiotic organs whose cell types display the same characteristics as their nodule counterparts. The results are discussed in the context of the evolution of root nodule symbioses.  (+info)

Investigation of the haem-nicotinate interaction in leghaemoglobin. Role of hydrogen bonding. (3/107)

A strategic assessment of the contributions of two active-site hydrogen bonds in the binding of nicotinate to recombinant ferric soybean leghaemoglobin a (rLb) was carried out by mutagenic replacement of the hydrogen-bonding residues (H61A and Y30A variants) and by complementary chemical substitution of the carboxylate functionality on the nicotinate ligand. Dissociation constants, Kd (pH 5.5, mu = 0.10 M, 25.0 +/- 0.1 degrees C), for binding of nicotinate to ferric rLb, H61A and Y30A were 1.4 +/- 0.3 microM, 19 +/- 1 microM and 11 +/- 1 microM, respectively; dissociation constants for binding of nicotinamide were, respectively, 38 +/- 1 mM, 50 +/- 2 mM and 12 +/- 1 mM, and for binding of pyridine were 260 +/- 50 microM, 4.5 +/- 0.5 microM and 66 +/- 8 microM, respectively. Binding of cyanide and azide to the H61A and Y30A variants was unaffected by the mutations. The pH-dependence of nicotinate binding for rLb and Y30A was consistent with a single titration process (pKa values 6.9 +/- 0.1 and 6.7 +/- 0.2, respectively); binding of nicotinate to H61A was independent of pH. Reduction potentials for the rLb and rLb-nicotinate derivatives were 29 +/- 2 mV (pH 5.40, 25.0 degrees C, mu = 0.10 M) and - 65 +/- 2 mV (pH 5.42, 25.0 degrees C, mu = 0.10 M), respectively. The experiments provide a quantitative assessment of the role of individual hydrogen bonds in the binding process, together with a definitive determination of the pKa of His61 and unambiguous evidence that titration of His61 controls binding in the neutral to alkaline region.  (+info)

CPP1, a DNA-binding protein involved in the expression of a soybean leghemoglobin c3 gene. (4/107)

Nodulin genes are specifically expressed in the nitrogen-fixing root nodules. We have identified a novel type of DNA-binding protein (CPP1) interacting with the promoter of the soybean leghemoglobin gene Gmlbc3. The DNA-binding domain of CPP1 contains two similar Cys-rich domains with 9 and 10 Cys, respectively. Genes encoding similar domains have been identified in Arabidopsis thaliana, Caenorhabditis elegans, the mouse, and human. The domains also have some homology to a Cys-rich region present in some polycomb proteins. The cpp1 gene is induced late in nodule development and the expression is confined to the distal part of the central infected tissue of the nodule. A constitutively expressed cpp1 gene reduces the expression of a Gmlbc3 promoter-gusA reporter construct in Vicia hirsuta roots. These data therefore suggest that CPP1 might be involved in the regulation of the leghemoglobin genes in the symbiotic root nodule.  (+info)

Two types of pea leghemoglobin genes showing different O2-binding affinities and distinct patterns of spatial expression in nodules. (5/107)

Five distinct cDNA clones for leghemoglobin (Lb) were isolated from pea (Pisum sativum) nodules. They were classified into two groups designated PsLbA and PsLbB according to sequence homology, O(2)-binding affinities of the recombinant proteins, and in situ localization of the mRNAs. The PsLbB group was comprised of four cDNA clones: PsLb120-1, -8, -29, and -34. They showed a high similarity of deduced amino acid sequences and O(2)-binding affinities of their recombinant proteins. Among them, the spatial expression pattern of PsLb120-1 was investigated in great detail, indicating that its transcripts were localized in the region from infection zone II to the distal part of nitrogen fixation zone III in effective nodules. PsLb5-10, which is the only cDNA clone of the PsLbA type, differed considerably from the PsLbB type in amino acid sequence, and the recombinant protein had a higher O(2)-binding affinity than those of the PsLbB type. The transcripts of PsLb5-10 were detected throughout the central tissue of effective nodules. However, in ineffective nodules on the pea mutant E135 (sym13), transcripts of PsLb5-10 were restricted to the distal portion of the central tissue as well as those of PsLb120-1. These findings indicate that the pea genome contains two types of Lb genes and suggest that they have different roles in the development of nitrogen-fixing symbiosis in pea nodules.  (+info)

Lotus japonicus forms early senescent root nodules with Rhizobium etli. (6/107)

Mesorhizobium loti and Rhizobium etli are microsymbionts of the Lotus and Phaseolus spp., respectively, and secrete essentially the same Nod factors. Lotus japonicus efficiently formed root nodules with R. etli CE3, irrespective of the presence or absence of a flavonoid-independent transcription activator nodD gene. On a nitrogen-free medium, however, the host plant inoculated with R. etli showed a severe nitrogen deficiency symptom. Initially, the nodules formed with R. etli were pale pink and leghemoglobin mRNA was detectable at significant levels. Nevertheless, the nodules became greenish with time. Acetylene-reduction activity of nodules formed with R. etli was comparable with that formed by M. loti 3 weeks postinoculation, but thereafter it decreased rapidly. The nodules formed with R. etli contained much more starch granules than those formed with M. loti. R. etli developed into bacteroids in the L. japonicus nodules, although the density of bacteroids in the infected cells was lower than that in the nodules formed with M. loti. The nodules formed with R. etli were of the early senescence type, in that membrane structures were drastically disintegrated in the infected cells of the greenish nodules. Thus, L. japonicus started and then ceased a symbiotic relationship with R. etli at the final stage.  (+info)

Abscisic acid induces a decline in nitrogen fixation that involves leghaemoglobin, but is independent of sucrose synthase activity. (7/107)

Sucrose synthase (SS) activity has been suggested to be a key point of regulation in nodule metabolism since this enzyme is down-regulated in response to different stresses which lead to decreased nitrogen fixation. In soybean, a dramatic decline of SS transcripts has been observed within 1 d from the onset of drought. Such a quick response suggests mediation by a signal transduction molecule. Abscisic acid (ABA) is a likely candidate to act as such a molecule as it mediates in a significant number of plant responses to environmental constraints. The hypothesis of ABA controlling nodule metabolism was approached in this work by assessing nodule responses to exogenous ABA supply in pea. Under the experimental conditions, ABA did not affect plant biomass, nodule numbers or dry weight. However, nitrogen fixation rate was reduced by 70% within 5 d and by 80% after 9 d leading to a reduced plant organic nitrogen content. Leghaemoglobin (Lb) content declined in parallel with that of nitrogen fixation. SS activity, however, was not affected by ABA treatment, and neither were the activities of the enzymes aspartate amino transferase, alkaline invertase, malate dehydrogenase, glutamate synthase, uridine diphosphoglucose pyrophosphorylase, isocitrate dehydrogenase, and glutamine synthetase. Nodule bacteroid-soluble protein content was reduced in nodules only after 9 d of ABA treatment. These results do not support the hypothesis that ABA directly regulates SS activity. However, they do suggest the occurrence of at least two different control pathways in nodules under environmental constraints, which include ABA being involved in a Lb/oxygen-related control of nitrogen fixation.  (+info)

Short-term metabolic responses of soybean root nodules to nitrate. (8/107)

Soybean (Glycine max L. Merr.) plants exposed to 10 mM KNO(3) for a 4 d period were used to test the correlation between nitrogenase activity, gene expression and sucrose metabolism. Nitrate caused the down-regulation of sucrose synthase (SS) transcripts within 1 d, although a decline in nodule SS activity and an increase in nodule sucrose content only occurred after 3-4 d. In a second experiment, plants were exposed to (15)N-labelled nitrate for 48 h to determine the time period during which nitrate was taken up, and to relate this to the decline in apparent nitrogenase activity (H(2) production in air) and the reduction in SS gene transcript levels. The peak of nitrate uptake appeared to be between 8 h and 14 h whilst apparent nitrogenase activity began to decline at about 17.5 h. The SS mRNA signal declined markedly between 14 h and 24 h. The correlative association of these factors is clear. However, SS activity per se does not appear to be related to the initial decline in apparent nitrogenase activity as a result of nitrate uptake. These findings, therefore, do not support the hypothesis that the regulation of nodule function is mediated by the regulation of SS activity.  (+info)