Induction of DAP12 phosphorylation, calcium mobilization, and cytokine secretion by Ly49H. (73/3925)

The ability of several Ly49 family members to inhibit natural killer (NK) cell functions through recruitment of SHP-1 phosphatase has been reported. In contrast, the mechanisms underlying the activating signal generated by Ly49D are poorly understood. A homodimeric phosphoprotein (pp16) that physically and functionally associates with Ly49D has been described. In this study, a rabbit anti-mouse pp16 antiserum was generated and used to demonstrate that pp16 corresponds to the recently described DAP12 molecule. In addition, we show that a second Ly49 family member that lacks an immunoreceptor tyrosine-based inhibitory motif and contains a charged residue in the transmembrane domain, Ly49H, also associates with DAP12. Furthermore, we show that engagement of the Ly49H/DAP12 complex results in phosphorylation of DAP12, intracellular calcium mobilization, and tumor necrosis factor secretion in transfected cells. These results thus provide evidence that Ly49H is an activating receptor that associates with DAP12, previously described as a pp16 component of the Ly49D receptor complex.  (+info)

Th1 cytokines and NK cells participate in the development of murine syngeneic graft-versus-host disease. (74/3925)

Syngeneic graft-vs-host disease (SGVHD) is induced by reconstituting lethally irradiated mice with syngeneic bone marrow cells followed by a short course of therapy with the immunosuppressive agent cyclosporine A. Following cessation of cyclosporine A therapy, animals develop clinical symptoms of SGVHD: weight loss, runting, and diarrhea. While it has been suggested that T cells are responsible for the induction and effector phases of SGVHD, the role of nonspecific effector cells and cytokine mediators has yet to be examined in the disease process. Mice with SGVHD had increased levels of message for IL-12p40, IFN-gamma, and TNF-alpha in the target organs of SGVHD as compared with transplant controls and asymptomatic cyclosporine A-treated mice. Concomitant with the increase in Th1 cytokines was an enhanced cellular infiltrate in the target organs of SGVHD mice as determined by histological analysis. To directly examine the role of IL-12 in the development of SGVHD, in vivo neutralization of IL-12 was performed. Treatment of mice with Abs to IL-12 inhibited SGVHD-mediated tissue pathology and mortality. Because IL-12 has been shown to activate both T cells and NK cells to secrete IFN-gamma and to become more cytolytic, studies were initiated to ascertain which lymphocyte populations play a role in the development of murine SGVHD. Depletion of NK cells inhibited clinical symptoms of SGVHD. In contrast, T cell depletion did not alter the disease process. Therefore, these findings collectively demonstrate a role for IL-12 and NK cells in the effector phase of murine SGVHD.  (+info)

Natural killing of MHC class I(-) lymphoblasts by NK cells from long-term bone marrow culture requires effector cell expression of Ly49 receptors. (75/3925)

NK cells from long-term bone marrow culture (LTBMC) were compared with IL-2-activated splenic NK cells [short-term spleen cell culture (STSC)] with regard to expression of inhibitory Ly49 receptors and cytotoxic function. In the LTBMC, the total number of NK cells expressing either one of the Ly49 molecules A, C/I and G2 was strongly reduced (10-15% of NK1.1(+) cells) compared to the STSC (80-90% of NK1.1(+) cells). With regard to cytotoxic function, we confirmed that LTBMC-derived NK cells efficiently killed the prototype NK target YAC-1. However, against other targets, killing was more variable. First, while STSC-derived NK cells clearly distinguished MHC class I(-) from MHC class I(+) tumor cell targets, LTBMC-derived NK cells did not; they either killed both targets equally well or not at all. Secondly, LTBMC-derived NK cells were largely incapable of killing lymphoblast targets deficient in MHC class I expression. To test whether this cytotoxic defect was due to the low number of Ly49(+) NK cells in the LTBMC, we separated Ly49(+) and Ly49(-) NK cells by cell sorting and tested them individually. This experiment showed that only Ly49(+) NK cells in the LTBMC were able to kill MHC class I(-) lymphoblasts (and to distinguish them from MHC class I(+)), despite good cytotoxicity against YAC-1 cells in both populations. These data suggest that certain modes of NK cell triggering are dependent on Ly49 receptor expression. From our results, we speculate that inhibitory receptors are expressed before triggering receptors for normal self cells during NK cell development, which may be an important mechanism to preserve self tolerance during the early stages of NK cell maturation.  (+info)

Kinetics and peptide dependency of the binding of the inhibitory NK receptor CD94/NKG2-A and the activating receptor CD94/NKG2-C to HLA-E. (76/3925)

The lytic function of human natural killer (NK) cells is markedly influenced by recognition of class I major histocompatibility complex (MHC) molecules, a process mediated by several types of activating and inhibitory receptors expressed on the NK cell. One of the most important of these mechanisms of regulation is the recognition of the non-classical class I MHC molecule HLA-E, in complex with nonamer peptides derived from the signal sequences of certain class I MHC molecules, by heterodimers of the C-type lectin-like proteins CD94 and NKG2. Using soluble, recombinant HLA-E molecules assembled with peptides derived from different leader sequences and soluble CD94/NKG2-A and CD94/NKG2-C proteins, the binding of these receptor-ligand pairs has been analysed. We show first that these interactions have very fast association and dissociation rate constants, secondly, that the inhibitory CD94/NKG2-A receptor has a higher binding affinity for HLA-E than the activating CD94/NKG2-C receptor and, finally, that recognition of HLA-E by both CD94/NKG2-A and CD94/NKG2-C is peptide dependent. There appears to be a strong, direct correlation between the binding affinity of the peptide-HLA-E complexes for the CD94/NKG2 receptors and the triggering of a response by the NK cell. These data may help to understand the balance of signals that control cytotoxicity by NK cells.  (+info)

Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. (77/3925)

We examined the effectiveness of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) blockade, alone or in combination with a granulocyte/macrophage colony-stimulating factor (GM-CSF)-expressing tumor cell vaccine, on rejection of the highly tumorigenic, poorly immunogenic murine melanoma B16-BL6. Recently established tumors could be eradicated in 80% (68/85) of the cases using combination treatment, whereas each treatment by itself showed little or no effect. Tumor rejection was dependent on CD8(+) and NK1.1(+) cells but occurred irrespective of the presence of CD4(+) T cells. Mice surviving a primary challenge rejected a secondary challenge with B16-BL6 or the parental B16-F0 line. The same treatment regimen was found to be therapeutically effective against outgrowth of preestablished B16-F10 lung metastases, inducing long-term survival. Of all mice surviving B16-BL6 or B16-F10 tumors after combination treatment, 56% (38/68) developed depigmentation, starting at the site of vaccination or challenge and in most cases progressing to distant locations. Depigmentation was found to occur in CD4-depleted mice, strongly suggesting that the effect was mediated by CTLs. This study shows that CTLA-4 blockade provides a powerful tool to enhance T cell activation and memory against a poorly immunogenic spontaneous murine tumor and that this may involve recruitment of autoreactive T cells.  (+info)

Ablation of a specific cell population by the replacement of a uniquely expressed gene with a toxin gene. (78/3925)

The transgenic expression of a toxin gene or a thymidine kinase gene under the control of cell type-specific promoter/enhancer has been shown to be useful for removing a specific cell population in mice. However, this approach requires extensive analysis of the control elements for gene expression in the preparation of the transgenic constructs, and furthermore, the toxin gene might be expressed ectopically because of random integration, resulting in aberrant depletion of unrelated cells. To avoid such difficulties with the transgenic approach, we established a method for the specific depletion of a cell population by replacing a uniquely expressed gene in the population with the diphtheria toxin gene by using homologous recombination. The NKR-P1 gene, a specific cell surface marker of natural killer (NK) cells, was selected as the target gene for depleting NK cells. In chimeric mice reconstituted with embryonic stem cells in which the NKR-P1 gene was replaced by the toxin gene, NKR-P1(+) cells were almost completely depleted, and NK cell function was abrogated in the embryonic stem cell-derived lymphoid cells. Other cell lineages developed normally. These results show that all NK cells express NKR-P1, that NKR-P1(+) cells do not influence the development of T and B cells, and further, that this technology of cell targeting is a fast and powerful method of generating mice lacking any chosen cell population.  (+info)

Sulphation heterogeneity in the trisaccharide (GalNAcSbeta1, 4GlcAbeta1,3GalNAcS) isolated from the non-reducing terminal of human aggrecan chondroitin sulphate. (79/3925)

We report here the isolation and sulphation isomer analyses of trisaccharides GalNAcS(beta1,4)GlcA(beta1,3)GalNAcS (in which S indicates sulphate) derived from the non-reducing termini of aggrecan chondroitin sulphate. Rat chondrosarcoma and human aggrecans were digested for 1 h at 37 degrees C with 30 micro-units of endo-chondroitinase ABC per microgram of chondroitin sulphate, and trisaccharides were isolated from the digests by ToyoPearl HW40S gel-filtration chromatography. Four trisaccharide species were identified; their sulphation isomer compositions, as determined by digestion with chondroitinase ACII and fluorescence-based ion-exchange HPLC, were GalNAc4Sbeta1,4GlcAbeta1,3GalNAc4S, GalNAc4Sbeta1,4GlcAbeta1,3GalNAc6S, GalNAc4,6Sbeta1,4GlcAbeta1, 3GalNAc4S and GalNAc4,6Sbeta1,4GlcAbeta1,3GalNAc6S. The abundances of such sequences in chondroitin sulphate on aggrecan from normal (foetal to 72 years of age) and from osteoarthritic human knee cartilages were also established. The results showed that non-reducing terminal GalNAc4S or GalNAc4,6S can be linked to either a 4-sulphated or a 6-sulphated disaccharide, suggesting that the sulphation of the last disaccharide might not have a direct effect on the specificity of chondroitin sulphate terminal GalNAc sulphotransferases. Furthermore, for each aggrecan preparation examined, the 4S-to-6S ratio of all chain interior disaccharides was equivalent to that in the last repeating disaccharides at the non-reducing terminus, suggesting that neither chondroitin 4-sulphotransferase nor chondroitin 6-sulphotransferase shows preferential activity near the chain terminus.  (+info)

The macromolecular characteristics of cartilage proteoglycans do not change when synthesis is up-regulated by link protein peptide. (80/3925)

Previous studies have shown that a synthetic, unglycosylated analogue of the N-terminal peptide from link protein can function as a growth factor and up-regulate proteoglycan biosynthesis in explant cultures of normal human articular cartilage from a wide age range of subjects (McKenna et al., Arthritis Rheum. 41 (1998) 157-162). The present work further shows that link peptide increased proteoglycan synthesis by cartilage cultured in both the presence and absence of serum, suggesting that the mechanism of up-regulation may be different from that of insulin-like growth factors. The proteoglycans synthesised during stimulation with link peptide were of normal hydrodynamic size and the ratio of core protein to glycosaminoglycan side chains and the proportions of the large proteoglycan aggrecan to the small proteoglycans, decorin and biglycan, remained constant. Aggrecan molecules were equally capable of forming aggregates as those from control tissues and the relative proportions of decorin and biglycan were unchanged showing that both were co-ordinately up-regulated. These results confirmed that this novel peptide is a potent stimulator of proteoglycan synthesis by articular cartilage and showed that the newly synthesised proteoglycans were of normal composition.  (+info)