(1/1109) Inhibition of human immunodeficiency virus type 1 replication by combination of transcription inhibitor K-12 and other antiretroviral agents in acutely and chronically infected cells.

8-Difluoromethoxy-1-ethyl-6-fluoro-1,4-dihydro-7-[4-(2-methoxyp hen yl)-1- piperazinyl]-4-oxoquinoline-3-carboxylic acid (K-12) has recently been identified as a potent and selective inhibitor of human immunodeficiency virus type 1 (HIV-1) transcription. In this study, we examined several combinations of K-12 and other antiretroviral agents for their inhibitory effects on HIV-1 replication in acutely and chronically infected cell cultures. Combinations of K-12 and a reverse transcriptase (RT) inhibitor, either zidovudine, lamivudine, or nevirapine, synergistically inhibited HIV-1 replication in acutely infected MT-4 cells. The combination of K-12 and the protease inhibitor nelfinavir (NFV) also synergistically inhibited HIV-1, whereas the synergism of this combination was weaker than that of the combinations with the RT inhibitors. K-12 did not enhance the cytotoxicities of RT and protease inhibitors. Synergism of the combinations was also observed in acutely infected peripheral blood mononuclear cells. The combination of K-12 and cepharanthine, a nuclear factor kappa B inhibitor, synergistically inhibited HIV-1 production in tumor necrosis factor alpha-stimulated U1 cells, a promonocytic cell line chronically infected with the virus. In contrast, additive inhibition was observed for the combination of K-12 and NFV. These results indicate that the combinations of K-12 and clinically available antiretroviral agents may have potential as chemotherapeutic modalities for the treatment of HIV-1 infection.  (+info)

(2/1109) Treatment with amprenavir alone or amprenavir with zidovudine and lamivudine in adults with human immunodeficiency virus infection. AIDS Clinical Trials Group 347 Study Team.

Amprenavir is a human immunodeficiency virus (HIV) protease inhibitor with a favorable pharmacokinetic profile and good in vitro activity. Ninety-two lamivudine- and protease inhibitor-naive individuals with >/=50 CD4 cells/mm3 and >/=5000 HIV RNA copies/mL were assigned amprenavir (1200 mg) alone or with zidovudine (300 mg) plus lamivudine (150 mg), all given every 12 h. After a median follow-up of 88 days, the findings of a planned interim review resulted in termination of the amprenavir monotherapy arm. Among 85 subjects with confirmed plasma HIV RNA determination, 15 of 42 monotherapy versus 1 of 43 triple-therapy subjects had an HIV RNA increase above baseline or 1 log10 above nadir (P=.0001). For subjects taking triple therapy at 24 weeks, the median decrease in HIV RNA was 2.04 log10 copies/mL, and 17 (63%) of 27 evaluable subjects had <500 HIV RNA copies/mL. Treatment with amprenavir, zidovudine, and lamivudine together reduced the levels of HIV RNA significantly more than did amprenavir monotherapy.  (+info)

(3/1109) Functional analysis of mutations conferring lamivudine resistance on hepatitis B virus.

Two patterns of mutation are commonly observed in the polymerase gene of lamivudine [(-)2'-deoxy-3'-thiacytidine]-resistant hepatitis B virus (HBV). The M539I substitution in the conserved YMDD motif occurs independently of other changes, whereas the M539V substitution is associated with an additional upstream change (L515M). These mutations were introduced into a common background and their effects on HBV DNA replication and lamivudine resistance studied. The L515M and M539V mutations provided only partial resistance while the M539I mutation conferred a high degree of lamivudine resistance. The combination of the L515M and M539V mutations gave an intermediate level of replication competence, compared with either mutation alone, and increased resistance to lamivudine. This probably accounts for these two mutations always being observed together. The M539I mutation reduced replication competence.  (+info)

(4/1109) The cost-effectiveness of treatment with lamivudine and zidovudine compared with zidovudine alone: a comparison of Markov model and trial data estimates.

In this paper, we present a Markov model for estimating the cost-effectiveness of combination therapy with lamivudine (LMV) and zidovudine (ZDV) compared with ZDV alone. We also compare the predictions of the Markov model for the impact of combination therapy on trial period costs with the actual impact of combination therapy on selected trial period costs estimated from data collected during the clinical trials. In the Markov model, disease stages were defined by CD4 cell count. Based on clinical trial data for patients with CD4 counts higher than 100 cells/mm3, the model assumed that the CD4 cell count level could be maintained above the level at the initiation of therapy for 6.5 months with monotherapy and for 18 months with combination therapy. After this period, transition rates for natural disease progression were used. Incremental lifetime costs and quality-adjusted life years gained with LMV/ZDV compared with ZDV alone were estimated for cohorts of patients initiating antiretroviral therapy at four different CD4 cell count stages. Cost per life year gained varied from $10,000 to $18,000, and cost per quality-adjusted life year gained varied from $14,000 to $27,000. In both cases, the combination therapy was more cost-effective when started earlier in disease progression. These estimates were not sensitive to changes in key parameter values. In addition, the model was used to estimate the impact of combination therapy on healthcare costs during the trial period; these estimated costs were compared with data on the cost of resource use collected during the clinical trial for hospital stays, unscheduled visits, medications, and outpatient procedures. Both the Markov model estimates and the trial data estimates for the trial period showed cost savings in other medical costs, though these were not large enough to completely offset the increased cost for antiretroviral therapy. The model estimates were more conservative than the estimates based on the trial data.  (+info)

(5/1109) Susceptibility of lamivudine-resistant hepatitis B virus to other reverse transcriptase inhibitors.

The emergence of resistant hepatitis B virus (HBV), with mutations in the YMDD motif of the polymerase gene after treatment with lamivudine, is becoming an important clinical problem. In this study, susceptibility of wild-type and lamivudine-resistant HBV M552I, M552V, and L528M/M552V mutants to other reverse transcriptase inhibitors was investigated by transient transfection of full-length HBV DNA into human hepatoma cells. HBV DNA replication was monitored by Southern blot hybridization, which showed the presence of a single-stranded band (representative of the HBV replicative intermediates) in the drug-free, wild-type HBV-transfected cells. This band was diminished in the samples of wild-type HBV DNA treated with either lamivudine, adefovir, or lobucavir. The band intensities from the lamivudine-resistant mutants were not decreased by treatment with lamivudine, but were decreased by the treatments with adefovir or lobucavir. In contrast, penciclovir and nevirapine did not diminish the intensity of the single-stranded band of wild-type HBV or the lamivudine-resistant mutants. These results demonstrate that lamivudine-resistant HBV is susceptible to adefovir and lobucavir. Lamivudine-resistant HBV should be treated with adefovir or lobucavir, and combination therapy with lamivudine and adefovir/lobucavir may prevent the emergence of lamivudine-resistant HBV.  (+info)

(6/1109) Use of real-time PCR and fluorimetry to detect lamivudine resistance-associated mutations in hepatitis B virus.

Very rapid amplification of DNA by PCR in small volumes can be continuously monitored by the detection of the binding of probes with a rapid cycler with built-in fluorometric detection. Primers were designed to amplify approximately 100 bp of the polymerase gene of hepatitis B virus (HBV) spanning codon 550, where mutations associated with resistance to lamivudine invariably occur. Four hybridization probes were synthesized: one was 3' labelled with fluorescein and hybridized upstream of codon 550. The others were 5' labelled with Cy5 and 3' labelled with biotin and spanned codon 550. The Cy5-labelled oligonucleotides contained either wild-type (ATG) or mutant (GTG or ATT) sequences. A Cy5-labelled probe and either the fluorescein-labelled probe or Sybr Green 1 (a compound that fluoresces when bound to double-stranded DNA) were included in each PCR. After completion of the amplification by using a LightCycler (Idaho Technology), the temperature at which the Cy5 probe melted from the product was determined in a melt program that took ca. 3 min. Pre- and posttreatment samples from eight patients (five chronic and three transplant) who failed lamivudine treatment were amplified, and the presence of mutations in codon 550 was determined by ABI sequencing and by using the LightCycler; in some cases PCR products were also cloned, and multiple clones were sequenced. Concordant results were obtained in all cases. We found the LightCycler to be better at resolving the sequences of genomic mixtures; for example, two samples showed a sequence at codon 550 of (A/G)T(G/T), which was found by fluorimetry to be mixtures of GTG and ATT but no ATG, and this finding was confirmed by the sequencing of clones. However, this approach was not more sensitive than population sequencing for the detection of the presence of mixtures. Overall, this pilot study has demonstrated an approach that could be an extremely rapid and economical method for the detection of lamivudine resistance-associated mutations in HBV.  (+info)

(7/1109) Single-dose pharmacokinetics and safety of abacavir (1592U89), zidovudine, and lamivudine administered alone and in combination in adults with human immunodeficiency virus infection.

Abacavir (1592U89), a nucleoside reverse transcriptase inhibitor with in vitro activity against human immunodeficiency virus type-1 (HIV-1), has been evaluated for efficacy and safety in combination regimens with other nucleoside analogs, including zidovudine (ZDV) and lamivudine (3TC). To evaluate the potential pharmacokinetic interactions between these agents, 15 HIV-1-infected adults with a median CD4(+) cell count of 347 cells/mm3 (range, 238 to 570 cells/mm3) were enrolled in a randomized, seven-period crossover study. The pharmacokinetics and safety of single doses of abacavir (600 mg), ZDV (300 mg), and 3TC (150 mg) were evaluated when each drug was given alone or when any two or three drugs were given concurrently. The concentrations of all drugs in plasma and the concentrations of ZDV and its 5'-glucuronide metabolite, GZDV, in urine were measured for up to 24 h postdosing, and pharmacokinetic parameter values were calculated by noncompartmental methods. The maximum drug concentration (Cmax), the area under the concentration-time curve from time zero to infinity (AUC0-infinity), time to Cmax (Tmax), and apparent elimination half-life (t1/2) of abacavir in plasma were unaffected by coadministration with ZDV and/or 3TC. Coadministration of abacavir with ZDV (with or without 3TC) decreased the mean Cmax of ZDV by approximately 20% (from 1.5 to 1.2 microg/ml), delayed the median Tmax for ZDV by 0.5 h, increased the mean AUC0-infinity for GZDV by up to 40% (from 11.8 to 16.5 microg. h/ml), and delayed the median Tmax for GZDV by approximately 0.5 h. Coadministration of abacavir with 3TC (with or without ZDV) decreased the mean AUC0-infinity for 3TC by approximately 15% (from 5.1 to 4.3 microg. h/ml), decreased the mean Cmax by approximately 35% (from 1.4 to 0.9 microg/ml), and delayed the median Tmax by approximately 1 h. While these changes were statistically significant, they are similar to the effect of food intake (for ZDV) or affect an inactive metabolite (for GZDV) or are relatively minor (for 3TC) and are therefore not considered to be clinically significant. No significant differences were found in the urinary recoveries of ZDV or GZDV when ZDV was coadministered with abacavir. There was no pharmacokinetic interaction between ZDV and 3TC. Mild to moderate headache, nausea, lymphadenopathy, hematuria, musculoskeletal chest pain, neck stiffness, and fever were the most common adverse events reported by those who received abacavir. Coadministration of ZDV or 3TC with abacavir did not alter this adverse event profile. The three-drug regimen was primarily associated with gastrointestinal events. In conclusion, no clinically significant pharmacokinetic interactions occurred between abacavir, ZDV, and 3TC in HIV-1-infected adults. Coadministration of abacavir with ZDV or 3TC produced mild changes in the absorption and possibly the urinary excretion characteristics of ZDV-GZDV and 3TC that were not considered to be clinically significant. Coadministration of abacavir with ZDV and/or 3TC was generally well tolerated and did not produce unexpected adverse events.  (+info)

(8/1109) Potent antiretroviral therapy of primary human immunodeficiency virus type 1 (HIV-1) infection: partial normalization of T lymphocyte subsets and limited reduction of HIV-1 DNA despite clearance of plasma viremia.

Antiretroviral therapy commenced during primary human immunodeficiency virus type 1 (HIV-1) infection (PHI) may limit the extent of viral replication and prevent early loss of HIV-specific CD4 lymphocyte function. We studied the effect of current standard therapy (2 nucleoside analogues and a protease inhibitor) in 16 patients with symptomatic PHI. In the 13 patients who completed 1 year of treatment, plasma HIV RNA was <50 copies/mL and median CD4 cell counts were comparable to HIV-uninfected controls, with naive (CD45RA+CD62L+), primed (CD45RO+), and T cell receptor Vbeta subsets all within normal ranges. However, HIV-1 DNA levels in treated and untreated PHI patients were similar. Furthermore, CD8 cell counts remained elevated, including activated (CD38+HLA-DR+), replicating (Ki-67+), and cytotoxic (perforin+CD28-) lymphocytes. In conclusion, early antiretroviral therapy resulted in clearance of viremia and prevented loss of crucial CD4 subsets. The persistence of HIV-1 DNA together with increased CD8 T lymphocyte turnover and activation indicate continued expression of viral antigens.  (+info)