(1/528) The tail domain of lamin Dm0 binds histones H2A and H2B.

In multicellular organisms, the higher order organization of chromatin during interphase and the reassembly of the nuclear envelope during mitosis are thought to involve an interaction between the nuclear lamina and chromatin. The nuclear distribution of lamins and of peripheral chromatin is highly correlated in vivo, and lamins bind specifically to chromatin in vitro. Deletion mutants of Drosophila lamin Dm0 were expressed to map regions of the protein that are required for its binding to chromosomes. The binding activity requires two regions in the lamin Dm0 tail domain. The apparent Kd of binding of the lamin Dm0 tail domain was found to be approximately 1 microM. Chromatin subfractions were examined to search for possible target molecules for the binding of lamin Dm0. Isolated polynucleosomes, nucleosomes, histone octamer, histone H2A/H2B dimer, and histones H2A or H2B displaced the binding of lamin Dm0 tail to chromosomes. This displacement was specific, because polyamines or proteins such as histones H1, H3, or H4 did not displace the binding of the lamin Dm0 tail to chromosomes. In addition, DNA sequences, including M/SARs, did not interfere with the binding of lamin Dm0 tail domain to chromosomes. Taken together, these results suggest that the interaction between the tail domain of lamin Dm0 and histones H2A and H2B may mediate the attachment of the nuclear lamina to chromosomes in vivo.  (+info)

(2/528) Roles of LAP2 proteins in nuclear assembly and DNA replication: truncated LAP2beta proteins alter lamina assembly, envelope formation, nuclear size, and DNA replication efficiency in Xenopus laevis extracts.

Humans express three major splicing isoforms of LAP2, a lamin- and chromatin-binding nuclear protein. LAP2beta and gamma are integral membrane proteins, whereas alpha is intranuclear. When truncated recombinant human LAP2beta proteins were added to cell-free Xenopus laevis nuclear assembly reactions at high concentrations, a domain common to all LAP2 isoforms (residues 1-187) inhibited membrane binding to chromatin, whereas the chromatin- and lamin-binding region (residues 1-408) inhibited chromatin expansion. At lower concentrations of the common domain, membranes attached to chromatin with a unique scalloped morphology, but these nuclei neither accumulated lamins nor replicated. At lower concentrations of the chromatin- and lamin-binding region, nuclear envelopes and lamins assembled, but nuclei failed to enlarge and replicated on average 2. 5-fold better than controls. This enhancement was not due to rereplication, as shown by density substitution experiments, suggesting the hypothesis that LAP2beta is a downstream effector of lamina assembly in promoting replication competence. Overall, our findings suggest that LAP2 proteins mediate membrane-chromatin attachment and lamina assembly, and may promote replication by influencing chromatin structure.  (+info)

(3/528) Architecture of the nuclear periphery of rat pachytene spermatocytes: distribution of nuclear envelope proteins in relation to synaptonemal complex attachment sites.

The nucleus of spermatocytes provides during the first meiotic prophase an interesting model for investigating relationships of the nuclear envelope (NE) with components of the nuclear interior. During the pachytene stage, meiotic chromosomes are synapsed via synaptonemal complexes (SCs) and attached through both ends to the nuclear periphery. This association is dynamic because chromosomes move during the process of synapsis and desynapsis that takes place during meiotic prophase. The NE of spermatocytes possesses some peculiarities (e.g., lower stability than in somatic cells, expression of short meiosis-specific lamin isoforms called C2 and B3) that could be critically involved in this process. For better understanding of the association of chromosomes with the nuclear periphery, in the present study we have investigated the distribution of NE proteins in relation to SC attachment sites. A major outcome was the finding that lamin C2 is distributed in the form of discontinuous domains at the NE of spermatocytes and that SC attachment sites are embedded in these domains. Lamin C2 appears to form part of larger structures as suggested by cell fractionation experiments. According to these results, we propose that the C2-containing domains represent local reinforcements of the NE that are involved in the proper attachment of SCs.  (+info)

(4/528) Apoptosis in hematopoietic cells (FL5.12) caused by interleukin-3 withdrawal: relationship to caspase activity and the loss of glutathione.

The mechanism of cell death caused by cytokine deprivation remains largely unknown. FL5.12 cells (a murine prolymphocytic cell line), following interleukin-3 (IL-3) withdrawal, undergo a decrease in intracellular glutathione (GSH) that precedes the onset of apoptosis. In the present study, the induction of apoptosis following IL-3 withdrawal or GSH depletion with DL-buthionine-[S,R,]-sulfoximine (BSO) was examined. Both conditions caused time-dependent increases in phosphatidylserine externalization, acridine orange and ethidium bromide staining, decreases in mitochondrial membrane potential, processing and activation of caspase-3 and proteolysis of the endogenous caspase substrate poly(adenosine diphosphate ribose)polymerase (PARP). Apoptosis induced by IL-3 deprivation but not BSO also caused lamin B1 cleavage, suggesting activation of caspase-6. Despite a more profound depletion of GSH after BSO than withdrawal of IL-3, the extent of apoptosis was somewhat lower. Benzyloxycarbonyl-Val-Ala-Asp(OMe)fluoromethyl ketone (z-VAD.fmk) blocked this caspase activity and prevented cell death after BSO exposure but not after IL-3 deprivation. Following IL-3 withdrawal, the caspase inhibitors z-VAD.fmk and boc-asp(OMe)fluoromethylketone (boc-asp.fmk) prevented the cleavage and activation of caspase-3, the breakdown of lamin B1 and partially mitigated PARP degradation. However, the externalization of phosphatidylserine, the fall in mitochondrial membrane potential and subsequent apoptotic cell death still occurred. These results suggest that IL-3 withdrawal may mediate cell death by a mechanism independent of both caspase activation and the accompanying loss of GSH.  (+info)

(5/528) Apoptosis and cell-cycle arrest in human and murine tumor cells are initiated by isoprenoids.

Diverse classes of phytochemicals initiate biological responses that effectively lower cancer risk. One class of phytochemicals, broadly defined as pure and mixed isoprenoids, encompasses an estimated 22,000 individual components. A representative mixed isoprenoid, gamma-tocotrienol, suppresses the growth of murine B16(F10) melanoma cells, and with greater potency, the growth of human breast adenocarcinoma (MCF-7) and human leukemic (HL-60) cells. beta-Ionone, a pure isoprenoid, suppresses the growth of B16 cells and with greater potency, the growth of MCF-7, HL-60 and human colon adenocarcinoma (Caco-2) cells. Results obtained with diverse cell lines differing in ras and p53 status showed that the isoprenoid-mediated suppression of growth is independent of mutated ras and p53 functions. beta-Ionone suppressed the growth of human colon fibroblasts (CCD-18Co) but only when present at three-fold the concentration required to suppress the growth of Caco-2 cells. The isoprenoids initiated apoptosis and, concomitantly arrested cells in the G1 phase of the cell cycle. Both suppress 3-hydroxy-3-methylglutaryl CoA reductase activity. beta-Ionone and lovastatin interfered with the posttranslational processing of lamin B, an activity essential to assembly of daughter nuclei. This interference, we postulate, renders neosynthesized DNA available to the endonuclease activities leading to apoptotic cell death. Lovastatin-imposed mevalonate starvation suppressed the glycosylation and translocation of growth factor receptors to the cell surface. As a consequence, cells were arrested in the G1 phase of the cell cycle. This rationale may apply to the isoprenoid-mediated G1-phase arrest of tumor cells. The additive and potentially synergistic actions of these isoprenoids in the suppression of tumor cell proliferation and initiation of apoptosis coupled with the mass action of the diverse isoprenoid constituents of plant products may explain, in part, the impact of fruit, vegetable and grain consumption on cancer risk.  (+info)

(6/528) Apoptosis of mouse liver nuclei induced in the cytosol of carrot cells.

We report here the apoptosis of mouse liver nuclei induced in the cytosol of carrot cells by cytochrome c. Several typical characteristics of apoptosis, such as chromatin condensation, margination and apoptotic bodies, were detected. The result of DNA gel electrophoresis showed that DNA was degraded into nucleosomal fragments. The terminal deoxynucleotidyl transferase-mediated dUTP-digoxigenin nick end labelling procedure was also performed to detect the breakage of 3'-OH ends of a DNA strand. Furthermore, we found that nuclear lamins were degraded from 88 kDa and 66 kDa to 37 kDa and 47 kDa fragments. The DNA fragmentation could be inhibited by AC-DEVD-CHO and AC-YVAD-CHO. The results indicate that the apoptosis in plant cells may share some similar pathways to apoptosis in animal cells.  (+info)

(7/528) Subcellular localization and partial purification of prelamin A endoprotease: an enzyme which catalyzes the conversion of farnesylated prelamin A to mature lamin A.

The nuclear lamina protein, lamin A is produced by proteolytic cleavage of a 74 kDa precursor protein, prelamin A. The conversion of this precursor to mature lamin A is mediated by a specific endoprotease, prelamin A endoprotease. Subnuclear fractionation indicates that the prelamin A endoprotease is localized at the nuclear membrane. The enzyme appears to be an integral membrane protein, as it can only be removed from the nuclear envelope with detergent. It is effectively solubilized by the detergent n-octyl-beta-D-glucopyranoside and can be partially-purified (approximately 1200-fold) by size exclusion and cation exchange (Mono S) chromatography. Prelamin A endoprotease from HeLa cells was eluted from Mono S with 0.3 M sodium chloride as a single peak of activity. SDS-PAGE analysis of this prelamin A endoprotease preparation shows that it contains one major polypeptide at 65 kDa and smaller amounts of a second 68 kDa polypeptide. Inhibition of the enzyme activity in this preparation by specific serine protease inhibitors is consistent with the enzyme being a serine protease.  (+info)

(8/528) Domain analysis of supervillin, an F-actin bundling plasma membrane protein with functional nuclear localization signals.

A growing number of actin-associated membrane proteins have been implicated in motile processes, adhesive interactions, and signal transduction to the cell nucleus. We report here that supervillin, an F-actin binding protein originally isolated from bovine neutrophil plasma membranes, contains functional nuclear targeting signals and localizes at or near vinculin-containing focal adhesion plaques in COS7-2 and CV1 cells. Overexpression of full-length supervillin in these cells disrupts the integrity of focal adhesion plaques and results in increased levels of F-actin and vinculin. Localization studies of chimeric proteins containing supervillin sequences fused with the enhanced green fluorescent protein indicate that: (1) the amino terminus promotes F-actin binding, targeting to focal adhesions, and limited nuclear localization; (2) the dominant nuclear targeting signal is in the center of the protein; and (3) the carboxy-terminal villin/gelsolin homology domain of supervillin does not, by itself, bind tightly to the actin cytoskeleton in vivo. Overexpression of chimeras containing both the amino-terminal F-actin binding site(s) and the dominant nuclear targeting signal results in the formation of large nuclear bundles containing F-actin, supervillin, and lamin. These results suggest that supervillin may contribute to cytoarchitecture in the nucleus, as well as at the plasma membrane.  (+info)