The 67-kDa laminin-binding protein is involved in shear stress-dependent endothelial nitric-oxide synthase expression. (41/4299)

It has been suggested that the mechanical forces acting on endothelial cells may be sensed in part by cell-matrix connections. We therefore studied the role of different matrix proteins, in particular laminin I, on a shear stress-dependent endothelial response, namely nitric-oxide synthase (eNOS) expression. Primary porcine aortic endothelial cells were seeded onto glass plates either noncoated (NC cells) or precoated with fibronectin (FN cells), laminin (LN cells), or collagen I (CN cells). Western blots were used to detect differences in the final matrix composition of these cells. A shear stress of 16 dyn/cm2 was applied for 6 h. Only LN cells showed detectable amounts of laminin I in their underlying matrix when they reached confluence. They reacted with a 2-fold increase of eNOS expression (n = 16, p < 0.001) to the exposure of shear stress, which went along with enhanced eNOS protein and NO release. In contrast, neither FN cells (n = 9) nor NC cells (n = 13) showed a significant increase of eNOS expression under shear stress. The increase in CN cells was borderline (1.4-fold; n = 9, p < 0.05) and was not associated with an increase of eNOS protein. The shear-induced increase in eNOS expression of LN cells was abolished by the peptide YIGSR, which blocks the cellular binding to laminin I via a 67-kDa laminin-binding protein, whereas a control peptide (YIGSK) had no effect. The induction of eNOS expression by shear stress is stimulated by an interaction of endothelial cells with laminin which is, at least in part, mediated by a 67-kDa laminin-binding protein.  (+info)

Relationships between several markers of extracellular matrix turn-over and ultrasonography in human Schistosomiasis mansoni. (42/4299)

We measured the concentrations of several serum and urinary fibrosis markers, which are metabolites of extracellular matrix, in schistosomiasis patients to investigate their relationship with the ultrasonographic scoring system and with parasitologic data. This study was conducted in patients with various stages of the disease evaluated by ultrasonography (intestinal disease with no organ involvement, with minor hepatosplenic involvement and with severe disease) and in endemic controls. The level of hyaluronan, which were increased in infected patients compared with controls (P < 0.01), was the only fibrosis marker that correlated with the ultrasonographic score (P = 0.003) and is thus a potential serum marker of schistosomiasis-associated morbidity. Urinary free pyridinoline levels were lower (P < 0.001) in infected patients with fibrosis (score > or = 1) than in nonfibrotic patients. A two-year follow-up of the patients treated with praziquantel showed that type I collagen and hyaluronan decreased during the first year post-treatment, whereas free pyridinolines peaked after 12 months and decreased thereafter.  (+info)

Expression of extracellular matrix components fibronectin and laminin in the human fetal heart. (43/4299)

It has been well documented that the extracellular matrix components fibronectin and laminin promote or regulate morphogenesis of the myocardial cells in mammalian heart. However, their chronological change of expression (or localization) in the human heart remains elusive. In this study, fibronectin and laminin in the left ventricle of forty-two human fetuses aged from 8 to 26 weeks gestation and left ventricular tissues obtained from a 2-week old infant and two adults were investigated by Western blot analyses and indirect immunofluorescence technique with monoclonal antibodies. In the fetal heart, fibronectins were present along the endocardium, epicardium, and linings of larger blood vessels. In 14-16 weeks gestation, fibronectin immunofluorescence became stronger but not evenly dispersed in the interstitium. After 24 weeks gestation, they were strongly positive only in the relatively larger blood vessels, as well as those in the infant and adult cardiac tissues. Laminins were strongly positive along the endocardium and basement membrane of the myocardial cells and fibroblasts during fetal life. After birth, laminins formed fine fibrillar network along the basement membrane in association with the transverse tubules of myocardial cell; these morphological characteristics remained in the adult cardiac tissues. These results indicate that fibronectin expression is relatively constant during fetal life but decreases after birth; in contrast, laminin expression is not age-dependent and constant throughout the life.  (+info)

Mesonephric cell migration induces testis cord formation and Sertoli cell differentiation in the mammalian gonad. (44/4299)

In mammals a single gene on the Y chromosome, Sry, controls testis formation. One of the earliest effects of Sry expression is the induction of somatic cell migration from the mesonephros into the XY gonad. Here we show that mesonephric cells are required for cord formation and male-specific gene expression in XY gonads in a stage-specific manner. Culturing XX gonads with an XY gonad at their surface, as a 'sandwich', resulted in cell migration into the XX tissue. Analysis of sandwich gonads revealed that in the presence of migrating cells, XX gonads organized cord structures and acquired male-specific gene expression patterns. From these results, we conclude that mesonephric cell migration plays a critical role in the formation of testis cords and the differentiation of XY versus XX cell types.  (+info)

Morphology and functional characteristics of human ovarian microvascular endothelium. (45/4299)

Corpus luteum formation is characterized by a period of extensive vascularization, as capillaries in the thecal layer of the collapsed follicle following ovulation invade the previously avascular granulosa layer. In order to study these processes in vitro we have developed an endothelial cell preparation from the specific microvasculature of the ovarian follicle. Follicular aspirates, obtained at oocyte collection for in-vitro fertilization (IVF), were filtered to obtain fragments of follicle wall. These were set in Matrigel and then cultured allowing the growth of capillary-like structures through the matrix. Upon emergence from the Matrigel the growing cells formed monolayers with the characteristic cobble-stone morphology of endothelial cells. Immunocytochemistry demonstrated the presence of a range of endothelial-specific markers including von Willebrand factor (vWF), Ulex europeus agglutinin (UEA)-1, CD31 and E-selectin, as well as VCAM-1, which is normally associated with stimulated endothelial cells. RT-PCR analysis showed the expression of two receptors for vascular endothelial growth factor (flt-1 and KDR), and the endothelial nitric oxide synthase, adding further evidence of their identity as human ovarian microvascular endothelial cells (HOMEC). Thus, the novel preparative procedure described now allows the generation of HOMEC cultures from readily available material resulting from IVF procedures.  (+info)

Binding of the renal epithelial cell line LLC-PK1 to laminin is regulated by protein kinase C. (46/4299)

The alpha6beta1 integrin heterodimer has been implicated in the mediation of renal epithelial cell binding to laminin, and it has been suggested that this binding is important for renal morphogenesis and development. Studies of nonrenal cells have suggested that the functional activity of alpha6beta1 integrin is regulated by protein kinase C (PKC) activity. In this study, the binding of a renal epithelial cell line, LLC-PK1, to laminin was characterized and the role of PKC activity in the modulation of binding was investigated. LLC-PK1 cells bound to laminin-coated surfaces in a time- and laminin concentration-dependent manner. Binding was strongly inhibited by anti-beta1 integrin antibodies and by anti-alpha6 integrin antibodies. Antibodies against alpha2 integrin and a3 integrin had little inhibitory effect. Cells bound to both whole laminin and laminin fragment E8, i.e., the fragment to which the alpha6beta1 integrin heterodimer binds. Exposure of cells to PKC activators for as little as 2 h enhanced cell binding to laminin approximately twofold, in a protein synthesis-dependent manner. PKC inhibitors antagonized this effect. PKC-stimulated binding was also inhibited by anti-beta1 integrin and anti-alpha6 integrin antibodies. PKC activation did not alter expression of beta1 integrin subunits at the cell surface after short time periods (2 to 4 h), but expression was increased after longer time periods (24 h). These results indicate that the renal epithelial cell line LLC-PK1 binds to laminin via the alpha6betal integrin heterodimer and binding is enhanced by PKC activation. The PKC-mediated enhancement of binding requires protein synthesis and is mediated in part by activation of surface alpha6beta1 integrin.  (+info)

Developmental expression and cellular origin of the laminin alpha2, alpha4, and alpha5 chains in the intestine. (47/4299)

Laminins are extracellular matrix glycoproteins that are involved in various cellular functions, including adhesion, proliferation, and differentiation. In this study, we examine the expression patterns and the cellular origins of the laminin alpha2, alpha4, and alpha5 chains in the developing mouse intestine and in in vitro mouse/chick or chick/mouse interspecies hybrid intestines. In situ hybridization and Northern blot analysis revealed that mRNA levels for all three laminin alpha chains are highest in the fetal intestine undergoing intense morphogenetic movements. Laminin alpha4 mRNA and polypeptide are associated with mesenchyme-derived cell populations such as endothelium and smooth muscle. In contrast, laminin alpha2 and alpha5 chains participate in the structural organization of the subepithelial basement membrane and, in the mature intestine, show a complementary pattern of expression. All three laminin alpha chains occur in the smooth muscle basement membrane, with a differential expression of laminin alpha5 chain in the circular and longitudinal smooth muscle layers. The cellular origin of laminin alpha2 and alpha5 chains found in the subepithelial cell basement membrane was studied by immunocytochemical analysis of mouse/chick or chick/mouse interspecies hybrid intestines at various stages of development using mouse-specific antibodies. Laminin alpha2 was found to be deposited into the basement membrane exclusively by mesenchymal cells, while the laminin alpha5 chain was deposited by both epithelial and mesenchymal cells in an apparently developmentally regulated pattern. We conclude that (1) multiple laminin alpha chains are expressed in the intestine, implying specific roles for individual laminin isoforms during intestinal development, and (2) reciprocal epithelial/mesenchymal interactions are essential for the formation of a structured subepithelial basement membrane.  (+info)

Targeted disruption of the LAMA3 gene in mice reveals abnormalities in survival and late stage differentiation of epithelial cells. (48/4299)

Laminin 5 regulates anchorage and motility of epithelial cells through integrins alpha6beta4 and alpha3beta1, respectively. We used targeted disruption of the LAMA3 gene, which encodes the alpha3 subunit of laminin 5 and other isoforms, to examine developmental functions that are regulated by adhesion to the basement membrane (BM). In homozygous null animals, profound epithelial abnormalities were detected that resulted in neonatal lethality, consistent with removal of all alpha3-laminin isoforms from epithelial BMs. Alterations in three different cellular functions were identified. First, using a novel tissue adhesion assay, we found that the mutant BM could not induce stable adhesion by integrin alpha6beta4, consistent with the presence of junctional blisters and abnormal hemidesmosomes. In the absence of laminin 5 function, we were able to detect a new ligand for integrin alpha3beta1 in the epidermal BM, suggesting that basal keratinocytes can utilize integrin alpha3beta1 to interact with an alternative ligand. Second, we identified a survival defect in mutant epithelial cells that could be rescued by exogenous laminin 5, collagen, or an antibody against integrin alpha6beta4, suggesting that signaling through beta1 or beta4 integrins is sufficient for survival. Third, we detected abnormalities in ameloblast differentiation in developing mutant incisors indicating that events downstream of adhesion are affected in mutant animals. These results indicate that laminin 5 has an important role in regulating tissue organization, gene expression, and survival of epithelium.  (+info)