Binding isotherms of sodium dodecyl sulfate to protein polypeptides with special reference to SDS-polyacylamide gel electrophoresis. (57/513)

To clarify the mode of interaction between sodium dodecyl sulfate (SDS) and protein polypeptides with special reference to SDS-polyacrylamide gel electrophoresis, the binding of SDS to several protein polypeptides was investigated by the equilibrium dialysis technique. Each of the binding isotherms was characterized by the presence of two phases: an initial gradual increase in the amount of binding to 0.3-0.6 g/g (first phase) and a subsequent steep increase to 1.2-1.5 g/g (second phase). The binding was completed at a concentration of SDS below the critical micelle concentration. Throughout the first and second phases, the isotherms obtained were different for each kind of protein. On the basis of experiments with bovine serum albumin and ribonuclease (EC 3.1.4.22], the isotherms were profoundly affected by the method used for modification of the sulfhydryl groups. The claim of Reynolds and Tanford (Proc. Natl, Acad. Sci. U.S., 66, 1002 (1970)) that the isotherms are virtually identical for many kinds of proteins was not supported by the present data. Changes in the gross and local conformations were examined with reference to the isotherms by measurements of CD spectrum, free boundary electrophoresis, and gel filtration. The results obtained were collectively interpreted based on the model of SDS-protein polypeptide complexes proposed by the present authors (J. Biochem., 75, 309 (1974)).  (+info)

A vegan diet free of gluten improves the signs and symptoms of rheumatoid arthritis: the effects on arthritis correlate with a reduction in antibodies to food antigens. (58/513)

OBJECTIVE: Whether food intake can modify the course of rheumatoid arthritis (RA) is an issue of continued scientific and public interest. However, data from controlled clinical trials are sparse. We thus decided to study the clinical effects of a vegan diet free of gluten in RA and to quantify the levels of antibodies to key food antigens not present in the vegan diet. METHODS: Sixty-six patients with active RA were randomized to either a vegan diet free of gluten (38 patients) or a well-balanced non-vegan diet (28 patients) for 1 yr. All patients were instructed and followed-up in the same manner. They were analysed at baseline and after 3, 6 and 12 months, according to the response criteria of the American College of Rheumatology (ACR). Furthermore, levels of antibodies against gliadin and beta-lactoglobulin were assessed and radiographs of the hands and feet were performed. RESULTS: Twenty-two patients in the vegan group and 25 patients in the non-vegan diet group completed 9 months or more on the diet regimens. Of these diet completers, 40.5% (nine patients) in the vegan group fulfilled the ACR20 improvement criteria compared with 4% (one patient) in the non-vegan group. Corresponding figures for the intention to treat populations were 34.3 and 3.8%, respectively. The immunoglobulin G (IgG) antibody levels against gliadin and beta-lactoglobulin decreased in the responder subgroup in the vegan diet-treated patients, but not in the other analysed groups. No retardation of radiological destruction was apparent in any of the groups. CONCLUSION: The data provide evidence that dietary modification may be of clinical benefit for certain RA patients, and that this benefit may be related to a reduction in immunoreactivity to food antigens eliminated by the change in diet.  (+info)

Salt-dependent monomer-dimer equilibrium of bovine beta-lactoglobulin at pH 3. (59/513)

Although bovine beta-lactoglobulin assumes a monomeric native structure at pH 3 in the absence of salt, the addition of salts stabilizes the dimer. Thermodynamics of the monomer-dimer equilibrium dependent on the salt concentration were studied by sedimentation equilibrium. The addition of NaCl, KCl, or guanidine hydrochloride below 1 M stabilized the dimer in a similar manner. On the other hand, NaClO(4) was more effective than other salts by about 20-fold, suggesting that anion binding is responsible for the salt-induced dimer formation, as observed for acid-unfolded proteins. The addition of guanidine hydrochloride at 5 M dissociated the dimer into monomers because of the denaturation of protein structure. In the presence of either NaCl or NaClO(4), the dimerization constant decreased with an increase in temperature, indicating that the enthalpy change (DeltaH(D)) of dimer formation is negative. The heat effect of the dimer formation was directly measured with an isothermal titration calorimeter by titrating the monomeric beta-lactoglobulin at pH 3.0 with NaClO(4). The net heat effects after subtraction of the heat of salt dilution, corresponding to DeltaH(D), were negative, and were consistent with those obtained by the sedimentation equilibrium. From the dependence of dimerization constant on temperature measured by sedimentation equilibrium, we estimated the DeltaH(D) value at 20 degrees C and the heat capacity change (DeltaC(p)) of dimer formation. In both NaCl and NaClO(4), the obtained DeltaC(p) value was negative, indicating the dominant role of burial of the hydrophobic surfaces upon dimer formation. The observed DeltaC(p) values were consistent with the calculated value from the X-ray dimeric structure using a method of accessible surface area. These results indicated that monomer-dimer equilibrium of beta-lactoglobulin at pH 3 is determined by a subtle balance of hydrophobic and electrostatic effects, which are modulated by the addition of salts or by changes in temperature.  (+info)

Thermal unfolding of monomeric and dimeric beta-lactoglobulins. (60/513)

The thermal stabilities of dimeric bovine beta-lactoglobulin and monomeric equine beta-lactoglobulin were investigated at neutral pH by means of differential scanning calorimetry, circular dichroism, tryptophan fluorescence, and by binding of an hydrophobic probe. Differential scanning calorimetry showed the presence of two structural domains with different thermal stabilities in both proteins. Thermodynamic analysis of the calorimetric signal revealed that the two domains unfold independently according to a mechanism where an equilibrium step is followed by an irreversible transition. The spectroscopic data supported this model and allowed recognition of the structural regions corresponding to the more thermally stable domain. The differences in thermal stability between the two proteins can be primarily ascribed to the properties of the less stable domain.  (+info)

Refolding of beta-lactoglobulin studied by stopped-flow circular dichroism at subzero temperatures. (61/513)

Refolding of bovine beta-lactoglobulin was studied by stopped-flow circular dichroism at subzero temperatures. In ethylene glycol 45%-buffer 55% at -15 degrees C, the isomerization rate from the kinetic intermediate rich in alpha-helix to the native state is approximately 300-fold slower than that at 4 degrees C in the absence of ethylene glycol, whereas the initial folding is completed within the dead time of the stopped-flow apparatus (10 ms). At -28 degrees C, we observed at least three phases; the fastest process, accompanied by an increase of alpha-helix content, is completed within the dead time of the stopped-flow apparatus (10 ms), the second phase, accompanied by an increase of alpha-helix content with the rate of 2 s(-1), and the third phase, accompanied by a decrease of alpha-helix content. This last phase, corresponding to the isomerization process at -15 degrees C described above, was so slow that we could not monitor any changes within 4 h. Based on the findings above, we propose that rapid alpha-helix formation and their concurrent collapse are common even in proteins rich in beta-structure in their native forms.  (+info)

Thermotropic phase behavior of monoglyceride-dicetylphosphate dispersions and interactions with proteins: a (2)H and (31)P NMR study. (62/513)

The phase behavior of a 1-[(2)H(35)]-stearoyl-rac-glycerol ([(2)H(35)]-MSG)/dicetylphosphate (DCP) mixture and its interaction with beta-lactoglobulin and lysozyme were studied by (2)H and (31)P nuclear magnetic resonance (NMR). The behavior of the lipids was monitored by using deuterium-labeled [(2)H(35)]-MSG as a selective probe for (2)H NMR and DCP for (31)P NMR. Both (2)H and (31)P NMR spectra exhibit characteristic features representative of different phases. In the lamellar phases, (31)P NMR spectra of DCP are different from the spectra of natural phospholipids, which is attributable to differences in the intramolecular motions and the orientation of the shielding tensor of DCP compared with phospholipids. The presence of the negatively charged amphiphile DCP has a large effect on the phase behavior of [(2)H(35)]-MSG. At low temperature, the presence of DCP inhibits crystallization of the gel phase into the coagel. Upon increasing the temperature, the gel phase of [(2)H(35)]-MSG transforms in the liquid-crystalline lamellar phase. In the presence of DCP, the gel phase directly transforms into an isotropic phase. The negatively charged beta-lactoglobulin and the positively charged lysozyme completely neutralize the destabilizing effect of DCP on the monoglyceride liquid-crystalline phase and they even stabilize this phase. Without DCP the proteins do not seem to interact with the monoglyceride. These results suggest that interaction is facilitated by electrostatic interactions between the negatively charged DCP and positively charged residues in the proteins. In addition, the nonbilayer-forming DCP creates insertion sites for proteins in the bilayer.  (+info)

Spectroscopic studies on the interaction of a water soluble porphyrin and two drug carrier proteins. (63/513)

The interaction of meso-tetrakis(p-sulfonatophenyl)porphyrin (TSPP) sodium salt to human serum albumin and beta-lactoglobulin was studied by steady-state and dynamic fluorescence at different pH of aqueous solutions. The formation of TSPP J-aggregates and a noncovalent TSPP-protein complex was monitored by fluorescence titrations, which depend on pH and on the protein nature and concentration. The complex between TSPP and protein displays a heterogeneous equilibrium with large changes in the binding strength versus pH. The large reduction of the effective binding constant from pH 2 to 7 suggests that electrostatic interactions are a major contribution to the binding of TSPP to the aforementioned proteins. TSPP aggregates and TSPP-protein complex exhibit circular dichroism induced by the presence of the protein. Circular dichroism spectra in the ultraviolet region show that the secondary structure of both proteins is not extensively affected by the TSPP presence. Protein-TSPP interaction was also examined by following the intrinsic fluorescence of the tryptophan residues of the proteins. Fluorescence quenching by acrylamide and TSPP itself also point to small changes on the protein tertiary structure and a critical distance R(0) approximately 56 A, between tryptophan and bound porphyrin, was estimated using the long distance Forster-type energy transfer formalism.  (+info)

Limited demethylation leaves mosaic-type methylation states in cloned bovine pre-implantation embryos. (64/513)

Cloning by nuclear transfer (NT) has been riddled with difficulties: most clones die before birth and survivors frequently display growth abnormalities. The cross-species similarity in abnormalities observed in cloned fetuses/animals leads us to suspect the fidelity of epigenetic reprogramming of the donor genome. Here, we found that single-copy sequences, unlike satellite sequences, are demethylated in pre-implantation NT embryos. The differential demethylation pattern between genomic sequences was confirmed by analyzing single blastocysts. It suggests selective demethylation of other developmentally important genes in NT embryos. We also observed a reverse relationship between methylation levels and inner cell mass versus trophectoderm (ICM/TE) ratios, which was found to be a result of another type of differential demethylation occurring in NT blastocysts where unequal methylation was maintained between ICM and TE regions. TE-localized methylation aberrancy suggests a widespread gene dysregulation in an extra-embryonic region, thereby resulting in placental dysfunction familiar to cloned fetuses/animals. These differential demethylations among genomic sequences and between differently allocated cells produce varied overall, but specified, methylation patterns, demonstrating that epigenetic reprogramming occurs in a limited fashion in NT embryos.  (+info)