PCR amplification of the gene acmA differentiates Lactococcus lactis subsp. lactis and L. lactis subsp. cremoris. (33/1459)

The occurrence of the acmA gene, encoding the lactococcal N-acetylmuramidase in new lactococcal isolates from raw milk cheeses, has been determined. Isolates were genotypically identified to the subspecies level with a PCR technique. On the basis of PCR amplification of the acmA gene, the presence or absence of an additional amplicon of approximately 700 bp correlated with Lactococcus lactis subspecies. L. lactis subsp. lactis exhibits both the expected 1,131-bp product and the additional amplicon, whereas L. lactis subsp. cremoris exhibits a single 1,131-bp fragment.  (+info)

N5-(L-1-carboxyethyl)-L-ornithine synthase: physical and spectral characterization of the enzyme and its unusual low pKa fluorescent tyrosine residues. (34/1459)

N5-(L-1-carboxyethyl)-L-ornithine synthase [E.C. 1.5.1.24] (CEOS) from Lactococcus lactis has been cloned, expressed, and purified from Escherichia coli in quantities sufficient for characterization by biophysical methods. The NADPH-dependent enzyme is a homotetramer (Mr approximately equal to 140,000) and in the native state is stabilized by noncovalent interactions between the monomers. The far-ultraviolet circular dichroism spectrum shows that the folding pattern of the enzyme is typical of the alpha,beta family of proteins. CEOS contains one tryptophan (Trp) and 19 tyrosines (Tyr) per monomer, and the fluorescence spectrum of the protein shows emission from both Trp and Tyr residues. Relative to N-acetyltyrosinamide, the Tyr quantum yield of the native enzyme is about 0.5. All 19 Tyr residues are titratable and, of these, two exhibit the uncommonly low pKa of approximately 8.5, 11 have pKa approximately 10.75, and the remaining six titrate with pKa approximately 11.3. The two residues with pKa approximately 8.5 contribute approximately 40% of the total tyrosine emission, implying a relative quantum yield >1, probably indicating Tyr-Tyr energy transfer. In the presence of NADPH, Tyr fluorescence is reduced by 40%, and Trp fluorescence is quenched completely. The latter result suggests that the single Trp residue is either at the active site, or in proximity to the sequence GSGNVA, that constitutes the beta alphabeta fold of the nucleotide-binding domain. Chymotrypsin specifically cleaves native CEOS after Phe255. Although inactivated by this single-site cleavage of the subunit, the enzyme retains the capacity to bind NADPH and tetramer stability is maintained. Possible roles in catalysis for the chymotrypsin sensitive loop and for the low pKa Tyr residues are discussed.  (+info)

Comparison of partial malolactic enzyme gene sequences for phylogenetic analysis of some lactic acid bacteria species and relationships with the malic enzyme. (35/1459)

DNA sequences covering 36% of the mle gene that encodes the malolactic enzyme were determined for 13 strains of lactic acid bacteria, representing Pediococcus, Leuconostoc, Lactobacillus and Oenococcus genera. The sequences were aligned with the corresponding region of mleS in Lactococcus lactis. The phylogenetic distance matrix tree of all mle sequences was compared with the 16S rRNA phylogenetic tree. The analysis showed that the mle fragment evolved more rapidly than the 16S gene and differently. Pediococcus and Lactobacillus species were intermixed in the 16S rRNA tree whereas they were separated in the mle tree. Leuconostoc mesenteroides and Oenococcus oeni were distinct from other species in the 16S rRNA tree, whereas they were intermixed with Lactobacillus species and Lactococcus lactis in the mle tree. The amino acid sequences deduced from partial mle genes were aligned with 22 malic enzyme sequences and the corresponding phylogenetic tree was constructed. Malic and malolactic enzymes were distinct at the phylogenetic level, except for malic enzymes of yeast and Escherichia coli which were nearer the malolactic enzymes than the other malic enzymes. The analysis of conserved sites showed several interesting amino acids specific to either malic enzyme or malolactic enzyme.  (+info)

TPW22, a lactococcal temperate phage with a site-specific integrase closely related to Streptococcus thermophilus phage integrases. (36/1459)

The temperate phage TPW22, induced from Lactococcus lactis subsp. cremoris W22, and the evolutionarily interesting integrase of this phage were characterized. Phage TPW22 was propagated lytically on L. lactis subsp. cremoris 3107, which could also be lysogenized by site-specific integration. The attachment site (attP), 5'-TAAGGCGACGGTCG-3', of phage TPW22 was present on a 7.5-kb EcoRI fragment, a 3.4-kb EcoRI-HindIII fragment of which was sequenced. Sequence information revealed the presence of an integrase gene (int). The deduced amino acid sequence showed 42 and 28% identity with integrases of streptococcal and lactococcal phages, respectively. The identities with these integrase-encoding genes were 52 and 45%, respectively, at the nucleotide level. This could indicate horizontal gene transfer. A stable integration vector containing attP and int was constructed, and integration in L. lactis subsp. cremoris MG1363 was obtained. The existence of an exchangeable lactococcal phage integration module was suggested. The proposed module covers the phage attachment site, the integrase gene, and surrounding factor-independent terminator structures. The phages phiLC3, TP901-1, and TPW22 all have different versions of this module. Phylogenetically, the TPW22 Int links the phiLC3 lactococcal integrase with known Streptococcus thermophilus integrases.  (+info)

Structure-function analysis of multidrug transporters in Lactococcus lactis. (37/1459)

The active extrusion of cytotoxic compounds from the cell by multidrug transporters is one of the major causes of failure of chemotherapeutic treatment of tumor cells and of infections by pathogenic microorganisms. A multidrug transporter in Lactococcus lactis, LmrA, is a member of the ATP-binding cassette (ABC) superfamily and a bacterial homolog of the human multidrug resistance P-glycoprotein. Another multidrug transporter in L. lactis, LmrP, belongs to the major facilitator superfamily, and is one example of a rapidly expanding group of secondary multidrug transporters in microorganisms. Thus, LmrA and LmrP are transport proteins with very different protein structures, which use different mechanisms of energy coupling to transport drugs out of the cell. Surprisingly, both proteins have overlapping specificities for drugs, are inhibited by the same set of modulators, and transport drugs via a similar transport mechanism. The structure-function relationships that dictate drug recognition and transport by LmrP and LmrA represent an intriguing area of research.  (+info)

Synthesis of lactococcin 972, a bacteriocin produced by Lactococcus lactis IPLA 972, depends on the expression of a plasmid-encoded bicistronic operon. (38/1459)

Synthesis of lactococcin 972 is plasmid-encoded. An operon composed of two genes that encode pre-bacteriocin and a putative immunity protein has been identified. The first gene encodes a 91-residue polypeptide that is exported via a sec-dependent system to give the mature 66-aa bacteriocin. The immunity protein is a 563-residue polypeptide with seven potential transmembrane domains. Two transcripts were observed from this region: one comprises the whole operon and is synthesized during the exponential phase of growth while the other, which corresponds just to the bacteriocin structural gene, presents a maximum in exponential cultures but is still present in late-stationary-phase cells.  (+info)

Analysis of the role of 7 kDa cold-shock proteins of Lactococcus lactis MG1363 in cryoprotection. (39/1459)

Low-temperature adaptation and cryoprotection were studied in the lactic acid bacterium Lactococcus lactis MG1363. An approximately 100-fold increased survival after freezing was observed when cells were shocked to 10 degrees C for 4 h compared to mid-exponential-phase cells grown at 30 degrees C, indicating an active protection against freezing. Using two-dimensional gel electrophoresis a group of 7 kDa cold-induced proteins (CSPs) was identified that corresponds to a previously described family of csp genes of L. lactis MG1363 (Wouters et al., 1998, Microbiology 144, 2885-2893). The 7 kDa CSPs appeared to be the most strongly induced proteins upon cold shock to 10 degrees C. Northern blotting and two-dimensional gel electrophoresis showed that the csp genes were maximally expressed at 10 degrees C, while induction was lower at 20 and 4 degrees C. However, pre-incubation at 20 and 4 degrees C, as well as stationary-phase conditions, also induced cryoprotection (approx. 30-, 130- and 20-fold, respectively, compared to 30 degrees C mid-exponential phase). For all treatments leading to an increased freeze survival (exposure to 4, 10 and 20 degrees C and stationary-phase conditions), increased levels of three proteins (26, 43 and 45 kDa) were observed for which a role in cryoprotection might be suggested. Increased freeze survival coincides with increased CSP expression, except for stationary-phase conditions. However, the level of observed freeze protection does not directly correlate with the csp gene expression levels. In addition, for the first time specific overproduction of a CSP in relation to freeze survival was studied. This revealed that L. lactis cells overproducing CspD at 30 degrees C show a 2-10-fold increased survival after freezing compared to control cells. This indicates that the 7 kDa cold-shock protein CspD may enhance the survival capacity after freezing but that other factors supply additional cryoprotection.  (+info)

The genetic switch regulating activity of early promoters of the temperate lactococcal bacteriophage TP901-1. (40/1459)

A functional analysis of open reading frame 4 (ORF4) and ORF5 from the temperate lactococcal phage TP901-1 was performed by mutant and deletion analysis combined with transcriptional studies of the early phage promoters p(R) and p(L). ORF4 (180 amino acids) was identified as a phage repressor necessary for repression of both promoters. Furthermore, the presence of ORF4 confers immunity of the host strain to TP901-1. ORF5 (72 amino acids) was found to be able to inhibit repression of the lytic promoter p(L) by ORF4. Upon transformation with a plasmid containing both ORF4 and ORF5 and their cognate promoters, clonal variation is observed: in each transformant, either p(L) is open and p(R) is closed or vice versa. The repression is still dependent on ORF4, and the presence of ORF5 is needed for the clonal variation. Induction of a repressed p(L) fusion containing orf4 and orf5 was obtained by addition of mitomycin C, and the induction was also shown to be dependent on the presence of the RecA protein, even though ORF4 does not contain a recognizable autocleavage site. Our results suggest that the relative amounts of the two proteins ORF4 and ORF5 determine the decision between lytic or lysogenic life cycle after phage infection and that a protein complex consisting of ORF4 and ORF5 may constitute a new type of genetic switch in bacteriophages.  (+info)