Molecular analysis of the microbial diversity present in the colonic wall, colonic lumen, and cecal lumen of a pig. (65/2525)

Random clones of 16S ribosomal DNA gene sequences were isolated after PCR amplification with eubacterial primers from total genomic DNA recovered from samples of the colonic lumen, colonic wall, and cecal lumen from a pig. Sequences were also obtained for cultures isolated anaerobically from the same colonic-wall sample. Phylogenetic analysis showed that many sequences were related to those of Lactobacillus or Streptococcus spp. or fell into clusters IX, XIVa, and XI of gram-positive bacteria. In addition, 59% of randomly cloned sequences showed less than 95% similarity to database entries or sequences from cultivated organisms. Cultivation bias is also suggested by the fact that the majority of isolates (54%) recovered from the colon wall by culturing were related to Lactobacillus and Streptococcus, whereas this group accounted for only one-third of the sequence variation for the same sample from random cloning. The remaining cultured isolates were mainly Selenomonas related. A higher proportion of Lactobacillus reuteri-related sequences than of Lactobacillus acidophilus- and Lactobacillus amylovorus-related sequences were present in the colonic-wall sample. Since the majority of bacterial ribosomal sequences recovered from the colon wall are less than 95% related to known organisms, the roles of many of the predominant wall-associated bacteria remain to be defined.  (+info)

Influence of different functional elements of plasmid pGT232 on maintenance of recombinant plasmids in Lactobacillus reuteri populations in vitro and in vivo. (66/2525)

Plasmid pGT232 (5.1 kb), an indigenous plasmid of Lactobacillus reuteri 100-23, was determined, on the basis of nucleotide and deduced protein sequence data, to belong to the pC194-pUB110 family of plasmids that replicate via the rolling-circle mechanism. The minimal replicon of pGT232 was located on a 1.7-kb sequence consisting of a double-strand origin of replication and a gene encoding the replication initiation protein, repA. An erythromycin-selectable recombinant plasmid containing this minimal replicon was stably maintained (>97% erythromycin-resistant cells) without antibiotic selection in an L. reuteri population under laboratory growth conditions but was poorly maintained (<33% resistant cells) in the L. reuteri population inhabiting the murine gastrointestinal tract. Stable maintenance (>90% resistant cells) of pGT232-derived plasmids in the lactobacillus population in vivo required an additional 1.0-kb sequence which contained a putative single-strand replication origin (SSO). The SSO of pGT232 is believed to be novel and functions in an orientation-specific manner.  (+info)

Involvement of manganese in conversion of phenylalanine to benzaldehyde by lactic acid bacteria. (67/2525)

We examined the involvement of Mn(II) in the conversion of phenylalanine to benzaldehyde in cell extracts of lactic acid bacteria. Experiments performed with Lactobacillus plantarum demonstrated that Mn(II), present at high levels in this strain, is involved in benzaldehyde formation by catalyzing the conversion of phenylpyruvic acid. Experiments performed with various lactic acid bacterial strains belonging to different genera revealed that benzaldehyde formation in a strain was related to a high Mn(II) level.  (+info)

Growth of facultatively heterofermentative lactobacilli on starter cell suspensions. (68/2525)

The growth of facultatively heterofermentative lactobacilli (FHL) on cell suspensions of the homofermentative Lactobacillus helveticus was investigated. Osmotic lysis of L. helveticus led to a significant increase of ribose. It decreased steadily in parallel with the growth of FHL, strongly suggesting that the bacteria used ribose as a growth substrate.  (+info)

Characterization of a bacteriocin-like substance produced by a vaginal Lactobacillus salivarius strain. (69/2525)

A novel bacteriocin-like substance produced by vaginal Lactobacillus salivarius subsp. salivarius CRL 1328 with activity against Enterococcus faecalis, Enterococcus faecium, and Neisseria gonorrhoeae was characterized. The highest level of production of this heat-resistant peptide or protein occurred during the late exponential phase. Its mode of action was shown to be bactericidal. L. salivarius subsp. salivarius CRL 1328 could be used for the design of a probiotic to prevent urogenital infections.  (+info)

PepR1, a CcpA-like transcription regulator of Lactobacillus delbrueckii subsp. lactis. (70/2525)

The PepR1 protein from Lactobacillus delbrueckii subsp. lactis DSM 7290 shares extensive homology with catabolite-control proteins from various Gram-positive bacteria. Expression of the subcloned pepR1 gene allowed for partial complementation of a ccpA defect in Staphylococcus xylosus. The influence of PepR1 on transcription of the prolidase gene pepQ, which is located adjacent to pepR1, was examined by use of lacZ reporter gene fusions in Escherichia coli. PepR1 stimulated transcription initiation at the pepQ promoter about twofold, and this effect required the integrity of a 14 bp palindromic cre-like sequence located 74 nt upstream of pepQ. In gel-mobility-shift assays, PepR1 specifically interacted with the pepQ promoter region and also with DNA fragments covering the promoters of the pepX, pepl and brnQ genes of Lb. delbrueckii subsp. lactis, which encode two additional peptidases and a branched-chain amino acid transporter, respectively. cre-like elements were identified in each of these DNA fragments. Catabolite control of PepQ was demonstrated in Lb. delbrueckii subsp. lactis. During growth with lactose the enzyme activity was twofold higher than in the presence of glucose, and corresponding differences were also detected in the level of pepQ transcription.  (+info)

X-prolyl dipeptidyl aminopeptidase gene (pepX) is part of the glnRA operon in Lactobacillus rhamnosus. (71/2525)

A peptidase gene expressing X-prolyl dipeptidyl aminopeptidase (PepX) activity was cloned from Lactobacillus rhamnosus 1/6 by using the chromogenic substrate L-glycyl-L-prolyl-beta-naphthylamide for screening of a genomic library in Escherichia coli. The nucleotide sequence of a 3.5-kb HindIII fragment expressing the peptidase activity revealed one complete open reading frame (ORF) of 2,391 nucleotides. The 797-amino-acid protein encoded by this ORF was shown to be 40, 39, and 36% identical with PepXs from Lactobacillus helveticus, Lactobacillus delbrueckii, and Lactococcus lactis, respectively. By Northern analysis with a pepX-specific probe, transcripts of 4.5 and 7.0 kb were detected, indicating that pepX is part of a polycistronic operon in L. rhamnosus. Cloning and sequencing of the upstream region of pepX revealed the presence of two ORFs of 360 and 1,338 bp that were shown to be able to encode proteins with high homology to GlnR and GlnA proteins, respectively. By multiple primer extension analyses, the only functional promoter in the pepX region was located 25 nucleotides upstream of glnR. Northern analysis with glnA- and pepX-specific probes indicated that transcription from glnR promoter results in a 2.0-kb dicistronic glnR-glnA transcript and also in a longer read-through polycistronic transcript of 7.0 kb that was detected with both probes in samples from cells in exponential growth phase. The glnA gene was disrupted by a single-crossover recombinant event using a nonreplicative plasmid carrying an internal part of glnA. In the disruption mutant, glnRA-specific transcription was derepressed 10-fold compared to the wild type, but the 7.0-kb transcript was no longer detectable with either the glnA- or pepX-specific probe, demonstrating that pepX is indeed part of glnRA operon in L. rhamnosus. Reverse transcription-PCR analysis further supported this operon structure. An extended stem-loop structure was identified immediately upstream of pepX in the glnA-pepX intergenic region, a sequence that showed homology to a 23S-5S intergenic spacer and to several other L. rhamnosus-related entries in data banks.  (+info)

Increased production of hydrogen peroxide by Lactobacillus delbrueckii subsp. bulgaricus upon aeration: involvement of an NADH oxidase in oxidative stress. (72/2525)

The growth of Lactobacillus delbrueckii subsp. bulgaricus (L. delbrueckii subsp. bulgaricus) on lactose was altered upon aerating the cultures by agitation. Aeration caused the bacteria to enter early into stationary phase, thus reducing markedly the biomass production but without modifying the maximum growth rate. The early entry into stationary phase of aerated cultures was probably related to the accumulation of hydrogen peroxide in the medium. Indeed, the concentration of hydrogen peroxide in aerated cultures was two to three times higher than in unaerated ones. Also, a similar shift from exponential to stationary phase could be induced in unaerated cultures by adding increasing concentrations of hydrogen peroxide. A significant fraction of the hydrogen peroxide produced by L. delbrueckii subsp. bulgaricus originated from the reduction of molecular oxygen by NADH catalyzed by an NADH:H(2)O(2) oxidase. The specific activity of this NADH oxidase was the same in aerated and unaerated cultures, suggesting that the amount of this enzyme was not directly regulated by oxygen. Aeration did not change the homolactic character of lactose fermentation by L. delbrueckii subsp. bulgaricus and most of the NADH was reoxidized by lactate dehydrogenase with pyruvate. This indicated that NADH oxidase had no (or a very small) energetic role and could be involved in eliminating oxygen.  (+info)