Development of resistance during antimicrobial therapy caused by insertion sequence interruption of porin genes. (9/3057)

We have demonstrated by using an in vitro approach that interruption of the OmpK36 porin gene by insertion sequences (ISs) is a common type of mutation that causes loss of porin expression and increased resistance to cefoxitin in Klebsiella pneumoniae. This mechanism also operates in vivo: of 13 porin-deficient cefoxitin-resistant clinical isolates of K. pneumoniae, 4 presented ISs in their ompK36 gene.  (+info)

Apolipoprotein E knock-out mice are highly susceptible to endotoxemia and Klebsiella pneumoniae infection. (10/3057)

Lipoproteins are able to neutralize bacterial lipopolysaccharide (LPS) and thereby inhibit the proinflammatory cytokine response. In a previous study, we demonstrated that hypercholesterolemic low density lipoprotein receptor knock-out (LDLr-/-) mice are protected against lethal endotoxemia and gram-negative infection. In the present study we investigated the susceptibility of apolipoprotein E knock-out mice (apoE-/-) to LPS and to Klebsiella pneumoniae. These mice have increased plasma lipoprotein concentrations in the very low density lipoprotein (VLDL)-sized fraction. Despite 8 -fold higher plasma cholesterol levels compared to controls, and in contrast to LDLr-/- mice, apoE-/- mice were significantly more susceptible to endotoxemia and to K. pneumoniae infection. Circulating TNFalpha concentrations after intravenously injected LPS were 4 - to 5-fold higher in apoE-/- mice, whereas IL-1alpha, IL-1beta, and IL-6 did not differ. This TNF response was not due to an increased cytokine production capacity of cells from apoE-/- mice, as ex vivo cytokine production in response to LPS did not differ between apoE-/- and control mice. The LPS-neutralizing capacity of apoE-/- plasma was significantly less than that of controls. Most likely, the absence of apoE itself in the knock-out mice explains the failure to neutralize LPS, despite the very high cholesterol concentrations.  (+info)

Stool microflora in extremely low birthweight infants. (11/3057)

AIM: To serially characterise aerobic and anaerobic stool microflora in extremely low birthweight infants and to correlate colonisation patterns with clinical risk factors. METHODS: Stool specimens from 29 infants of birthweight <1000 g were collected on days 10, 20, and 30 after birth. Quantitative aerobic and anaerobic cultures were performed. RESULTS: By day 30, predominant species were Enterococcus faecalis, Escherichia coli, Staphylococcus epidermidis, Enterbacter cloacae, Klebsiella pneumoniae, and Staphylococcus haemolyticus. Lactobacillus and Bifidobacteria spp were identified in only one infant. In breast milk fed (but not in formula fed) infants, the total number of bacterial species/stool specimen increased significantly with time (2.50 (SE 0.34) on day 10; 3.13 (0.38) on day 20; 4.27 (0.45) on day 30) as did quantitative bacterial counts; Gram negative species accounted for most of the increase. On day 30, significant inverse correlations were found between days of previous antibiotic treatment and number of bacterial species (r=0.491) and total organisms/g of stool (r=0.482). Gestational age, birthweight, maternal antibiotic or steroid treatment, prolonged rupture of the membranes, and mode of delivery did not seem to affect colonisation patterns. CONCLUSIONS: The gut of extremely low birthweight infants is colonised by a paucity of bacterial species. Breast milking and reduction of antibiotic exposure are critical to increasing fecal microbial diversity.  (+info)

Expression and functional analysis of an N-truncated NifA protein of Herbaspirillum seropedicae. (12/3057)

In Herbaspirillum seropedicae, an endophytic diazotroph, nif gene expression is under the control of the transcriptional activator NifA. We have over-expressed and purified a protein containing the central and C-terminal domains of the H. seropedicae NifA protein, N-truncated NifA, fused to a His-Tag sequence. This fusion protein was found to be partially soluble and was purified by affinity chromatography. Band shift and footprinting assays showed that the N-truncated NifA protein was able to bind specifically to the H. seropedicae nifB promoter region. In vivo analysis showed that this protein activated the nifH promoter of Klebsiella pneumoniae in Escherichia coli only in the absence of oxygen and this activation was not negatively controlled by ammonium ions.  (+info)

MgATP-independent hydrogen evolution catalysed by nitrogenase: an explanation for the missing electron(s) in the MgADP-AlF4 transition-state complex. (13/3057)

When the MoFe (Kp1) and Fe (Kp2) component proteins of Klebsiella pneumoniae nitrogenase are incubated with MgADP and AlF4(-) in the presence of dithionite as a reducing agent, a stable putative transition-state complex is produced [Yousafzai and Eady (1997) Biochem. J. 326, 637-640]. Surprisingly, the EPR signal associated with reduced Kp2 is not detectable, but Kp1 retains the S=3/2 EPR signal arising from the dithionite reduced state of the MoFe cofactor centre of the protein. This is consistent with the [Fe4S4] centre of the Fe protein in the complex being oxidized, and similar observations have been made with the complex of Azotobacter vinelandii [Spee, Arendsen, Wassink, Marritt, Hagen and Haaker (1998) FEBS Lett. 432, 55-58]. No satisfactory explanation for the fate of the electrons lost by Kp2 has been forthcoming. However, we report here that during the preparation of the MgADP-AlF4 K. pneumoniae complex under argon, H2 was evolved in amounts corresponding to one half of the FeMoco content of the Kp1 (FeMoco is the likely catalytic site of nitrogenase with a composition Mo:Fe7:S9:homocitrate). This is surprising, since activity is observed during incubation in the absence of MgATP, normally regarded as being essential for nitrogenase function, and in the presence of MgADP, a strong competitive inhibitor of nitrogenase. The formation of H2 by nitrogenase in the absence of AlF4(-) was also observed in reaction mixtures containing MgADP but not MgATP. The reaction showed saturation kinetics when Kp1 was titrated with increasing amounts of Kp2 and, at saturation, the amount of H2 formed was stoichiometric with the FeMoco content of Kp1. The dependence of the rate of formation of H2 on [MgADP] was inconsistent with the activity arising from MgATP contamination. We conclude that MgATP is not obligatory for H+ reduction by nitrogenase since MgADP supports a very low rate of hydrogen evolution.  (+info)

Porin expression in clinical isolates of Klebsiella pneumoniae. (14/3057)

Two porins, OmpK36 and OmpK35, have been described previously in Klebsiella pneumoniae, and they are homologous to the Escherichia coli porins OmpC and OmpF, respectively, at both the DNA and amino acid levels. Optimal resolution of the two K. pneumoniae porins by electrophoresis on polyacrylamide gels is not achieved using gel systems already described for E. coli and requires modifications of the bisacrylamide content of the resolving gels. Once resolved, identification of porins OmpK36 and OmpK35 cannot be based solely on their apparent molecular masses since in some strains the OmpK36 porin migrates faster than the OmpK35 porin, whilst in other strains OmpK35 is the faster-migrating porin. Expression of OmpK35 porin is increased in low-osmolarity medium and, combined with Western blot analysis, this allows for the identification of both porins. Application of this identification system showed that most isolates lacking expression of extended-spectrum beta-lactamases express the two porins, whereas most isolates producing these beta-lactamases express only porin OmpK36, and the OmpK35 porin is either very low or not expressed.  (+info)

Identification and characterization of a new porin gene of Klebsiella pneumoniae: its role in beta-lactam antibiotic resistance. (15/3057)

Klebsiella pneumoniae porin genes were analyzed to detect mutations accounting for the porin deficiency observed in many beta-lactam-resistant strains. PCR and Southern blot analysis revealed the existence of a third porin gene in addition to the OmpK36 and OmpK35 porin genes previously described. This new porin gene was designated ompK37 and is present in all of the clinical isolates tested. The OmpK37 porin gene was cloned, sequenced, and overexpressed in Escherichia coli. In contrast to that of the major porins, OmpK37 porin expression was only detectable by Western blot analysis in porin-deficient beta-lactam-resistant strains, suggesting strong down regulation under standard laboratory conditions. Functional characterization suggested a narrower pore for the OmpK37 porin than for K. pneumoniae porins OmpK36 and OmpK35. This correlated with the susceptibility to certain beta-lactam antibiotics, since a K. pneumoniae strain expressing porin OmpK37, but not porin OmpK36 or OmpK35, was less susceptible to beta-lactam antibiotics than the same strain expressing either porin OmpK36 or OmpK35.  (+info)

In vitro activities of the potent, broad-spectrum carbapenem MK-0826 (L-749,345) against broad-spectrum beta-lactamase-and extended-spectrum beta-lactamase-producing Klebsiella pneumoniae and Escherichia coli clinical isolates. (16/3057)

An important mechanism of bacterial resistance to beta-lactam antibiotics is inactivation by beta-lactam-hydrolyzing enzymes (beta-lactamases). The evolution of the extended-spectrum beta-lactamases (ESBLs) is associated with extensive use of beta-lactam antibiotics, particularly cephalosporins, and is a serious threat to therapeutic efficacy. ESBLs and broad-spectrum beta-lactamases (BDSBLs) are plasmid-mediated class A enzymes produced by gram-negative pathogens, principally Escherichia coli and Klebsiella pneumoniae. MK-0826 was highly potent against all ESBL- and BDSBL-producing K. pneumoniae and E. coli clinical isolates tested (MIC range, 0.008 to 0.12 microgram/ml). In E. coli, this activity was associated with high-affinity binding to penicillin-binding proteins 2 and 3. When the inoculum level was increased 10-fold, increasing the amount of beta-lactamase present, the MK-0826 MIC range increased to 0.008 to 1 microgram/ml. By comparison, similar observations were made with meropenem while imipenem MICs were usually less affected. Not surprisingly, MIC increases with noncarbapenem beta-lactams were generally substantially greater, resulting in resistance in many cases. E. coli strains that produce chromosomal (Bush group 1) beta-lactamase served as controls. All three carbapenems were subject to an inoculum effect with the majority of the BDSBL- and ESBL-producers but not the Bush group 1 strains, implying some effect of the plasmid-borne enzymes on potency. Importantly, MK-0826 MICs remained at or below 1 microgram/ml under all test conditions.  (+info)