Molecular and biochemical characterization of VEB-1, a novel class A extended-spectrum beta-lactamase encoded by an Escherichia coli integron gene. (1/3057)

A clinical isolate, Escherichia coli MG-1, isolated from a 4-month-old Vietnamese orphan child, produced a beta-lactamase conferring resistance to extended-spectrum cephalosporins and aztreonam. In a disk diffusion test, a typical synergistic effect between ceftazidime or aztreonam and clavulanic acid was observed along with an unusual synergy between cefoxitin and cefuroxime. The gene for VEB-1 (Vietnamese extended-spectrum beta-lactamase) was cloned and expressed in E. coli JM109. The recombinant plasmid pRLT1 produced a beta-lactamase with a pI of 5.35 and conferred high-level resistance to extended-spectrum (or oxyimino) cephalosporins and to aztreonam. Vmax values for extended-spectrum cephalosporins were uncommonly high, while the affinity of the enzyme for ceftazidime and aztreonam was relatively low. blaVEB-1 showed significant homology at the DNA level with only blaPER-1 and blaPER-2. Analysis of the deduced protein sequence showed that VEB-1 is a class A penicillinase having very low levels of homology with any other known beta-lactamases. The highest percentage of amino acid identity was 38% with PER-1 or PER-2, two uncommon class A extended-spectrum enzymes. Exploration of the genetic environment of blaVEB-1 revealed the presence of gene cassette features, i.e., (i) a 59-base element associated with blaVEB-1; (ii) a second 59-base element just upstream of blaVEB-1, likely belonging to the aacA1-orfG gene cassette; (iii) two core sites (GTTRRRY) on both sides of blaVEB-1; and (iv) a second antibiotic resistance gene 3' of blaVEB-1, aadB. blaVEB-1 may therefore be the first class A extended-spectrum beta-lactamase that is part of a gene cassette, which itself is likely to be located on a class 1 integron, as sulfamide resistance may indicate. Furthermore, blaVEB-1 is encoded on a large (> 100-kb) transferable plasmid found in a Klebsiella pneumoniae MG-2 isolated at the same time from the same patient, indicating a horizontal gene transfer.  (+info)

Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli. (2/3057)

1,2-Propanediol (1,2-PD) is a major commodity chemical that is currently derived from propylene, a nonrenewable resource. A goal of our research is to develop fermentation routes to 1,2-PD from renewable resources. Here we report the production of enantiomerically pure R-1,2-PD from glucose in Escherichia coli expressing NADH-linked glycerol dehydrogenase genes (E. coli gldA or Klebsiella pneumoniae dhaD). We also show that E. coli overexpressing the E. coli methylglyoxal synthase gene (mgs) produced 1,2-PD. The expression of either glycerol dehydrogenase or methylglyoxal synthase resulted in the anaerobic production of approximately 0.25 g of 1,2-PD per liter. R-1,2-PD production was further improved to 0.7 g of 1,2-PD per liter when methylglyoxal synthase and glycerol dehydrogenase (gldA) were coexpressed. In vitro studies indicated that the route to R-1,2-PD involved the reduction of methylglyoxal to R-lactaldehyde by the recombinant glycerol dehydrogenase and the reduction of R-lactaldehyde to R-1, 2-PD by a native E. coli activity. We expect that R-1,2-PD production can be significantly improved through further metabolic and bioprocess engineering.  (+info)

In-vitro selection of porin-deficient mutants of two strains of Klebsiella pneumoniae with reduced susceptibilities to meropenem, but not to imipenem. (3/3057)

We have evaluated the ability of imipenem and meropenem to select, in vitro, resistant mutants of two clinical isolates of Klebsiella pneumoniae producing both SHV and TEM beta-lactamases. Only meropenem selected mutants of both isolates for which the MICs of meropenem, but not imipenem, were markedly higher than those for the parent strains; the MICs of several other beta-lactam antibiotics, including beta-lactam/beta-lactamase inhibitor combinations, for these mutants were also higher than those for the parent strains. In contrast, the MICs for the imipenem-selected mutants were the same as, or similar to, those for the parent strains. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis analysis revealed that an outer membrane protein in both parent strains was absent in the meropenem-selected mutants, but not in the imipenem-selected mutants. This protein is likely to be a porin, the absence of which is presumably associated with impaired beta-lactam permeability and, therefore, the reduced susceptibilities to these antibiotics exhibited by the mutant strains. We believe that this is the first report of the in-vitro selection of porin-deficient mutants of K. pneumoniae following exposure to meropenem.  (+info)

Phagocytosis of Vibrio cholerae O139 Bengal by human polymorphonuclear leukocytes. (4/3057)

Capsulated bacteria exhibit serum (complement) resistance and resistance to phagocytosis, which result in disseminated infections. Vibrio cholerae O139 strains possess a thin capsule and have been found to be partially serum resistant in a previous study. In the present study, compared to a standard capsulated Klebsiella pneumoniae strain, which showed total resistance to killing by phagocytosis, V. cholerae O139 strains were shown to be only partially resistant, with most strains showing <40% survival. These findings may explain the relative rarity of V. cholerae O139 bacteremia in cholera caused by this organism.  (+info)

Tyrosine aminotransferase catalyzes the final step of methionine recycling in Klebsiella pneumoniae. (5/3057)

An aminotransferase which catalyzes the final step in methionine recycling from methylthioadenosine, the conversion of alpha-ketomethiobutyrate to methionine, has been purified from Klebsiella pneumoniae and characterized. The enzyme was found to be a homodimer of 45-kDa subunits, and it catalyzed methionine formation primarily using aromatic amino acids and glutamate as the amino donors. Histidine, leucine, asparagine, and arginine were also functional amino donors but to a lesser extent. The N-terminal amino acid sequence of the enzyme was determined and found to be almost identical to the N-terminal sequence of both the Escherichia coli and Salmonella typhimurium tyrosine aminotransferases (tyrB gene products). The structural gene for the tyrosine aminotransferase was cloned from K. pneumoniae and expressed in E. coli. The deduced amino acid sequence displayed 83, 80, 38, and 34% identity to the tyrosine aminotransferases from E. coli, S. typhimurium, Paracoccus denitrificans, and Rhizobium meliloti, respectively, but it showed less than 13% identity to any characterized eukaryotic tyrosine aminotransferase. Structural motifs around key invariant residues placed the K. pneumoniae enzyme within the Ia subfamily of aminotransferases. Kinetic analysis of the aminotransferase showed that reactions of an aromatic amino acid with alpha-ketomethiobutyrate and of glutamate with alpha-ketomethiobutyrate proceed as favorably as the well-known reactions of tyrosine with alpha-ketoglutarate and tyrosine with oxaloacetate normally associated with tyrosine aminotransferases. The aminotransferase was inhibited by the aminooxy compounds canaline and carboxymethoxylamine but not by substrate analogues, such as nitrotyrosine or nitrophenylalanine.  (+info)

Construction and characterization of mutations within the Klebsiella mrkD1P gene that affect binding to collagen type V. (6/3057)

The fimbria-associated MrkD1P protein mediates adherence of type 3 fimbriate strains of Klebsiella pneumoniae to collagen type V. Currently, three different MrkD adhesins have been described in Klebsiella species, and each possesses a distinctive binding pattern. Therefore, the binding abilities of mutants possessing defined mutations within the mrkD1P gene were examined in order to determine whether specific regions of the adhesin molecule were responsible for collagen binding. Both site-directed and chemically induced mutations were constructed within mrkD1P, and the ability of the gene products to be incorporated into fimbrial appendages or bind to collagen was determined. Binding to type V collagen was not associated solely with one particular region of the MrkD1P protein, and two classes of nonadhesive mutants were isolated. In one class of mutants, the MrkD adhesin was not assembled into the fimbrial shaft, whereas in the second class of mutants, the adhesin was associated with fimbriae but did not bind to collagen. Both hemagglutinating and collagen-binding activities were associated with the MrkD1P molecule, since P pili and type 3 fimbriae carrying adhesive MrkD proteins exhibited identical binding properties.  (+info)

Characterization of mdcR, a regulatory gene of the malonate catabolic system in Klebsiella pneumoniae. (7/3057)

The Klebsiella pneumoniae mdcR gene, which encodes a LysR-type regulator, was overexpressed in Escherichia coli. Purified MdcR was found to bind specifically to the control region of either the malonate decarboxylase (mdc) genes or mdcR. We have also demonstrated that MdcR is an activator of the expression of the mdc genes, whereas it represses the transcription of the putative control region of mdcR, PmdcR, indicating a negative autoregulatory control.  (+info)

Conserved organization in the cps gene clusters for expression of Escherichia coli group 1 K antigens: relationship to the colanic acid biosynthesis locus and the cps genes from Klebsiella pneumoniae. (8/3057)

Group 1 capsules of Escherichia coli are similar to the capsules produced by strains of Klebsiella spp. in terms of structure, genetics, and patterns of expression. The striking similarities between the capsules of these organisms prompted a more detailed investigation of the cps loci encoding group 1 capsule synthesis. Six strains of K. pneumoniae and 12 strains of E. coli were examined. PCR analysis showed that the clusters in these strains are conserved in their chromosomal locations. A highly conserved block of four genes, orfX-wza-wzb-wzc, was identified in all of the strains. The wza and wzc genes are required for translocation and surface assembly of E. coli K30 antigen. The conservation of these genes points to a common pathway for capsule translocation. A characteristic JUMPstart sequence was identified upstream of each cluster which may function in conjunction with RfaH to inhibit transcriptional termination at a stem-loop structure found immediately downstream of the "translocation-surface assembly" region of the cluster. Interestingly, the sequence upstream of the cps clusters in five E. coli strains and one Klebsiella strain indicated the presence of IS elements. We propose that the IS elements were responsible for the transfer of the cps locus between organisms and that they may continue to mediate recombination between strains.  (+info)