H5 Histone and DNA-relaxing enzyme of chicken erythrocytes. Interaction with superhelical DNA. (65/127079)

The interaction of closed circular duplex DNA with the lysine-rich H5 histone fraction of avian erythrocytes has been studied. H5, like H1 histone, interacts preferentially with superhelical DNA. The extent of interaction increases with increasing negative or positive superhelicity. Salt-extracted lysine-rich histones show the same specificity for interaction with superhelices as do acid-extracted preparations. Chicken erythrocyte nuclei contain DNA-relaxing enzyme. This enzyme is extracted from the nuclei at lower salt concentrations than those required to extract H1 and H5 histones and is, therefore, probably a function of a protein distinct from H1 and H5 histones.  (+info)

Polymerization of Acanthamoeba actin. Kinetics, thermodynamics, and co-polymerization with muscle actin. (66/127079)

The kinetics and thermodynamics for the polymerization of purified Acanthamoeba actin were studied and compared to muscle actin. Polymerization was qualitatively similar for the two actins with a rate-limiting nucleation step followed by rapid polymer extension. Polymerization occurred only above a threshold critical concentration which varied with polymerization conditions for each actin. In the presence of 2 mM MgCl2, nucleation of both actins was rapid and their critical concentrations were similarly low and not detectably dependent on temperature. In 0.1 M KCl, the rates of nucleation of both actins were much slower than when Mg2+ was present and were significantly different from each other. Also, under these conditions, the critical concentrations of Acanthamoeba and muscle actin were significantly different and both varied markedly with temperature. These quantitative differences between the two actins could be attributed to differences in both their enthalpies and entropies of polymerization, Acanthamoeba actin having the more positive deltaH and delta S. Co-polymerization of the two actins was also demonstrated. Overall, however, there were no qualitative differences between Acanthamoeba and muscle actin that would suggest a unique role for the monomer-polymer equilibrium of cytoplasmic actin in cell motility.  (+info)

Stimulation of phosphorylase kinase autophosphorylation by peptide analogs of phosphorylase. (67/127079)

Autoactivation of phosphorylase kinase in the presence of substrates has been studied to determine the cause of the hysteresis, or lag, in the phosphorylase kinase reaction. Peptide analogs corresponding to the convertible serine region of phosphorylase have been used as low molecular weight alternative substrates. Autophosphorylation of the kinase molecule was measured under conditions that favored autoactivation. Phosphorylase b and a tetradecapeptide, which was found to be a good model of phosphorylase, stimulated autoactivation by 86- and 37-fold, respectively. The tetradecapeptide also stimulated autophosphorylation of subunits A and B of the kinase molecule. This increased autophosphorylation coincided with an increased ability to convert phosphorylase. This finding supports the hypothesis that autophosphorylation is responsible for the lag in the phosphorylase kinase reaction. No evidence was obtained to suggest that the lag could be due to dissociation of the kinase. The stoichiometry of phosphate incorporation into phosphorylase kinase subunits by autophosphorylation was much greater than that reported to occur by protein kinase phosphorylation. Multiple phosphorylation sites in subunit A accounted for most of the phosphate incorporation during autophosphorylation. Saturating levels of hexa- and octapeptide analogs also caused stimulation of autophosphorylation. Possible mechanisms and experimental implications of substrate-stimulated autophosphorylation are discussed. Consideration also is given to the possible role of effectors in autophosphorylation in vivo.  (+info)

Lipolytic action of cholera toxin on fat cells. Re-examination of the concept implicating GM1 ganglioside as the native membrane receptor. (68/127079)

The possible role of galactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylglucosylceramide (GM1) ganglioside in the lipolytic activity of cholera toxin on isolated fat cells has been examined. Analyses of the ganglioside content and composition of intact fat cells, their membranous ghosts, and the total particulate fraction of these cells indicate that N-acetylneuraminylgalactosylglucosylceramide (GM3) represents the major ganglioside, with substantial amounts of N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylglucosylceramide (GM2) and smaller amounts of other higher homologues also present. Native GM1 was not detected in any of these preparations. Examination of the relative capacities of various exogenously added radiolabeled sphingolipids to bind to the cells indicated that GM2 and glucosylsphingosine were accumulated by the cells to extents comparable to GM1. Galactosylsphingosine and sulfatide also exhibited significant, although lesser, binding affinities for the cells. The adipocytes appeared to nonspecifically bind exogenously added GM1; saturation of binding sites for GM1 could not be observed up to the highest concentration tested (2 X 10(-4) M), wherein about 7 X 10(9) molecules were associated with the cells. Essentially all of this exogenously added GM1 was found bound to the plasma membrane "ghost" fraction. Investigation of the biological responses of the cells confirmed their sensitivities to both cholera toxin and epinephrine-stimulated lipolysis, as well as the lag period displayed during the toxin's action. While we could confirm that the toxin's lipolytic activity can be enhanced by prior treatment of the fat cells with GM1, several of the observed characteristics of this phenomenon differ from earlier reported findings. Accordingly, added GM1 was able to enhance only the subsequent rate, but not the extent, of toxin-stimulated glycerol release (lipolysis) from the cells. We also were unable to confirm the ability of GM1 to enhance the toxin's activity at either saturating or at low toxin concentrations. The limited ability of added GM1 to enhance the toxin's activity appeared in a unique bell-shaped dose-response manner. The inability of high levels of GM1 to stimulate a dose of toxin that was ineffective on native cells suggests that the earlier reported ability of crude brain gangliosides to accomplish this was due to some component other than GM1 in the crude extract. While several glycosphingolipids and some other carbohydrate-containing substances that were tested lacked the ability to mimic the enhancing effect of GM1, 4-methylumbelliferyl-beta-D-galactoside exhibited an effect similar to, although less pronounced than, that of GM1. The findings in these studies are unable to lend support to the earlier hypothesis that (a) GM1 is cholera toxin's naturally occurring membrane receptor on native fat cells, and (b) the ability of exogenously added GM1 to enhance the toxin's lipolytic activity represents the specific creation of additional natural receptors on adipocytes...  (+info)

Subunit dissociation in fish hemoglobins. (69/127079)

The tetramer-dimer dissociation equilibria (K 4,2) of several fish hemoglobins have been examined by sedimentation velocity measurements with a scanner-computer system for the ultracentrifuge and by flash photolysis measurements using rapid kinetic methods. Samples studied in detail included hemoglobins from a marine teleost, Brevoortia tyrannus (common name, menhaden); a fresh water teleost, Cyprinus carpio, (common name, carp); and an elasmobranch Prionace glauca (common name, blue shark). For all three species in the CO form at pH 7, in 0.1 M phosphate buffer, sedimentation coefficients of 4.3 S (typical of tetrameric hemoglobin) are observed in the micromolar concentration range. In contrast, mammalian hemoglobins dissociate appreciably to dimers under these conditions. The inability to detect dissociation in three fish hemoglobins at the lowest concentrations examined indicates that K 4,2 must have a value of 10(-8) M or less. In flash photolysis experiments on very dilute solutions in long path length cells, two kinetic components were detected with their proportions varying as expected for an equilibrium between tetramers (the slower component) and dimers (the faster component); values of K 4,2 for the three fish hemoglobins in the range 10(-9) to 10(-8) M were calculated from these data. Thus, the values of K 4,2 for liganded forms of the fish hemoglobins appear to be midway between the value for liganded human hemoglobin (K 4,2 approximately 10(-6) M) and unliganded human hemoglobin (K 4,2 approximately 10(-12) M). This conclusion is supported by measurements on solutions containing guanidine hydrochloride to enhance the degree of dissociation. All three fish hemoglobins are appreciably dissociated at guanidine concentrations of about 0.8 M, which is roughly midway between the guanidine concentrations needed to cause comparable dissociation of liganded human hemoglobin (about 0.4 M) and unliganded human hemoglobin (about 1.6 M). Kinetic measurements on solutions containing guanidine hydrochloride indicated that there are changes in both the absolute rates and the proportions of the fast and slow components, which along with other factors complicated the analysis of the data in terms of dissociation constants. Measurements were also made in solutions containing urea to promote dissociation, but with this agent very high concentrations (about 6 M) were required to give measureable dissociation and the fish hemoglobins were unstable under these conditions, with appreciable loss of absorbance spectra in both the sedimentation and kinetic experiments.  (+info)

Reactivity of cyanate with valine-1 (alpha) of hemoglobin. A probe of conformational change and anion binding. (70/127079)

The 3-fold increase in the carbamylation rate of Val-1 (alpha) of hemoglobin upon deoxygenation described earlier is now shown to be a sensitive probe of conformational change. Thus, whereas this residue in methemoglobin A is carbamylated at the same rate as in liganded hemoglobin, upon addition of inositol hexaphosphate its carbamylation rate is enhanced 30% as much as the total change in the rate between the CO and deoxy states. For CO-hemoglobin Kansas in the presence of the organic phosphate, the relative increase in the carbamylation rate of this residue is about 50%. These results indicate that methemoglobin A and hemoglobin Kansas in the presence of inositol hexaphosphate do not assume a conformation identical with deoxyhemoglobin but rather form either a mixture of R and T states or an intermediate conformation in the region around Val-1 (alpha). Studies on the mechanism for the rate enhancement in deoxyhemoglobin suggest that the cyanate anion binds to groups in the vicinity of Val-1 (alpha) prior to proton transfer and carbamylation of this NH2-terminal residue. Thus, specific removal with carboxypeptidase B of Arg-141 (alpha), which is close to Val-1 (alpha) in deoxyhemoglobin, abolishes the enhancement in carbamylation. Chloride, which has the same valency as cyanate, is a better competitive inhibitor of the carbamylation of deoxyhemoglobin (Ki = 50 mM) compared with liganded hemoglobin. Nitrate and iodide are also effective inhibitors of the carbamylation of Val-1 (alpha) of deoxyhemoglobin (Ki = 35 mM); inorganic phosphate, sulfate, and fluoride are poor competitive inhibitors. The change in pKa of Val-1 (alpha) upon deoxygenation may be due to its differential interaction with chloride.  (+info)

Isolation and characterization of two mouse L cell lines resistant to the toxic lectin ricin. (71/127079)

Two variant mouse L cell lines (termed CL 3 and CL 6) have been selected for resistant to ricin, a galactose-binding lectin with potent cytotoxic activity. The resistant lines exhibit a 50 to 70% decrease in ricin binding and a 300- to 500-fold increase in resistance to the toxic effects of ricin. Crude membrane preparations of CL 3 cells have increased sialic acid content (200% of control), while the galactose, mannose, and hexosamine content is within normal limits. Both the glycoproteins and glycolipids of CL 3 cells have increased sialic acid, with the GM3:lactosylceramide ratios for parent L and CL 3 cells being 0.29 and 1.5, respectively. In contrast, the membranes of CL 6 cells have a decrease in sialic acid, galactose, and hexosamine content with mannose being normal. Both cell lines have specific alterations in glycosyltransferase activities which can account for the observed membrane sugar changes. CL 3 cells have increased CMP-sialic acid:glycoprotein sialyltransferase and GM3 synthetase activities, while CL 6 cells have decrease UDP-GlcNAc:glycoproteinN-acetylglucosaminyltransferase and DPU-galactose:glycoprotein galactosyltransferase activities. The increased sialic acid content of CL 3 cells serves to mask ricin binding sites, since neuraminidase treatment of this cell line restores ricin binding to essentially normal levels. However, the fact that neuraminidase-treated CL 3 cells are still 45-fold resistant to ricin indicates that either a special class of productive ricin binding sites is not being exposed or that the cell line has a second mechanism for ricin resistance.  (+info)

Role of glucagon on the control of hepatic protein synthesis and degradation in the rat in vivo. (72/127079)

The effect of glucagon on hepatic protein systhesis and proteolysis has been investigated. The intraperitoneal administration of 200 mug of glucagon produced an increase of the polypeptide chains completion time which was maximal 5 min after its administration and approached control values at 20 min. The increase of the polypeptides chains completion time observed at 5 min after the hormone administration represents a 38% inhibition of the hepatic protein synthetic rate. When glucagon was continuously supplied by intravascular infusion, maximal inhibition was attained throughout the experiment. This inhibition of protein synthesis brought about by glucagon was accompanied by an increase in the polyribosomal state of aggregation, indicating that the hormone acts mainly if not exclusively, on the elongation or termination step, or both. The administration of glucagon produced also a progressive increase in the hepatic valine concentration. This increase could not be accounted for the the decrease in plasma valine levels, suggesting that the rise in haptic valine concentration is an expression of hepatic proteolysis rather than the result of an accelerated transport of amino acids across the hepatocyte plasma membrane. The different time sequence in the glucagon-induced effects of protein synthesis and proteolysis suggests that both effects are independent and probably mediated by different mechanisms.  (+info)