A novel class of protein from wheat which inhibits xylanases. (33/127079)

We have purified a novel class of protein that can inhibit the activity of endo-beta-1,4-xylanases. The inhibitor from wheat (Triticum aestivum, var. Soisson) is a glycosylated, monomeric, basic protein with a pI of 8.7-8.9, a molecular mass of 29 kDa and a unique N-terminal sequence of AGGKTGQVTVFWGRN. We have shown that the protein can inhibit the activity of two family-11 endo-beta-1, 4-xylanases, a recombinant enzyme from Aspergillus niger and an enzyme from Trichoderma viride. The inhibitory activity is heat and protease sensitive. The kinetics of the inhibition have been characterized with the A. niger enzyme using soluble wheat arabinoxylan as a substrate. The Km for soluble arabinoxylan in the absence of inhibitor is 20+/-2 mg/ml with a kcat of 103+/-6 s-1. The kinetics of the inhibition of this reaction are competitive, with a Ki value of 0.35 microM, showing that the inhibitor binds at or close to the active site of free xylanase. This report describes the first isolation of a xylanase inhibitor from any organism.  (+info)

Purification and characterization of an alpha-galactosyltransferase from Trypanosoma brucei. (34/127079)

A membrane-associated galactosyltransferase from Trypanosoma brucei was purified 34000-fold by affinity chromatography on UDP-hexanolamine-Sepharosetrade mark. Using SDS/PAGE under reducing conditions, the isolated enzyme ran as a relatively broad band with apparent molecular masses of 53 kDa and 52 kDa, indicative of glycosylation and the existence of two isoforms. N-Glycosylation of the enzyme was subsequently confirmed using Western blotting and either specific binding of concanavalin A or peptide-N4-(N-acetylglucosaminyl)asparagine amidase digestion. The de-N-glycosylated enzyme ran with apparent molecular masses of 51 kDa and 50 kDa, indicative of a single N-glycosylation site. The galactosyltransferase exhibited a pH optimum at 7.2 and had a pronounced requirement for Mn2+ ions (KM=2.5 mM) for its action. The transferase activity was independent of the concentration of Triton X-100. The enzyme was capable of transferring galactose from UDP-galactose to a variety of galactose-based acceptors in alpha-glycosidic linkages. The apparent KM values for UDP-galactose and for the preferred acceptor substrate N-acetyl-lactosamine are 46 microM and 4.5 mM respectively. From these results we would like to suggest that the galactosyltransferase functions in the processing of terminal N-acetyl-lactosamine structures of trypanosomal glycoproteins.  (+info)

Pseudomonas aeruginosa exoenzyme S is a biglutamic acid ADP-ribosyltransferase. (35/127079)

Kinetic analysis of two mutations within Pseudomonas aeruginosa exoenzyme S (ExoS) showed that a E379D mutation inhibited expression of ADP-ribosyltransferase activity but had little effect on the expression of NAD glycohydrolase activity while a E381D mutation inhibited expression of both activities. These data identify ExoS as a biglutamic acid ADP-ribosyltransferase, where E381 is the catalytic residue and E379 contributes to the transfer of ADP-ribose to the target protein.  (+info)

Fish oil feeding delays influenza virus clearance and impairs production of interferon-gamma and virus-specific immunoglobulin A in the lungs of mice. (36/127079)

Ingestion of fish oil can suppress the inflammatory response to injury and may impair host resistance to infection. To investigate the effect of a diet containing fish oil on immunity to viral infection, 148 BALB/c mice were fed diets containing 3 g/100 g of sunflower oil with either 17 g/100 g of fish oil or beef tallow for 14 d before intranasal challenge with live influenza virus. At d 1 and d 5 after infection, the mice fed fish oil had higher lung viral load and lower body weight (P < 0.05). In addition to the greater viral load and weight loss at d 5 after infection, the fish oil group consumed less food (P < 0.05) while the beef tallow group was clearing the virus, had regained their preinfection weights and was returning to their preinfection food consumption. The fish oil group had impaired production of lung interferon-gamma (IFN-gamma), serum immunoglobulin (Ig) G and lung IgA-specific antibodies (all P < 0. 05) although lung IFN-alpha/beta and the relative proportions of bronchial lymph node CD4+ and CD8+ T lymphocytes did not differ between groups after infection. The present study demonstrates a delay in virus clearance in mice fed fish oil associated with reduced IFN-gamma and antibody production and a greater weight loss and suppression of appetite following influenza virus infection. However, differences observed during the course of infection did not affect the ultimate outcome as both groups cleared the virus and returned to preinfection food consumption and body weight by d 7.  (+info)

Allyl-containing sulfides in garlic increase uncoupling protein content in brown adipose tissue, and noradrenaline and adrenaline secretion in rats. (37/127079)

The effects of garlic supplementation on triglyceride metabolism were investigated by measurements of the degree of thermogenesis in interscapular brown adipose tissue (IBAT), and noradrenaline and adrenaline secretion in rats fed two types of dietary fat. In Experiment 1, rats were given isoenergetic high-fat diets containing either shortening or lard with or without garlic powder supplementation (8 g/kg of diet). After 28 d feeding, body weight, plasma triglyceride levels and the weights of perirenal adipose tissue and epididymal fat pad were significantly lower in rats fed diets supplemented with garlic powder than in those fed diets without garlic powder. The content of mitochondrial protein and uncoupling protein (UCP) in IBAT, and urinary noradrenaline and adrenaline excretion were significantly greater in rats fed a lard diet with garlic powder than in those fed the same diet without garlic. Other than adrenaline secretion, differences due to garlic were significant in rats fed shortening, also. In Experiment 2, the effects of various allyl-containing sulfides present in garlic on noradrenaline and adrenaline secretion were evaluated. Administration of diallyldisulfide, diallyltrisulfide and alliin, organosulfur compounds present in garlic, significantly increased plasma noradrenaline and adrenaline concentrations, whereas the administration of disulfides without allyl residues, diallylmonosulfide and S-allyl-L-cysteine did not increase adrenaline secretion. These results suggest that in rats, allyl-containing sulfides in garlic enhance thermogenesis by increasing UCP content in IBAT, and noradrenaline and adrenaline secretion.  (+info)

Prior protein intake may affect phenylalanine kinetics measured in healthy adult volunteers consuming 1 g protein. kg-1. d-1. (38/127079)

Study of the amino acid metabolism of vulnerable groups, such as pregnant women, children and patients, is needed. Our existing protocol is preceded by 2 d of adaptation to a low 13C formula diet at a protein intake of 1 g. kg-1. d-1 to minimize variations in breath 13CO2 enrichment and protein metabolism. To expand on our potential study populations, a less invasive protocol needs to be developed. We have already established that a stable background 13CO2 enrichment can be achieved on the study day without prior adaptation to the low 13C formula. Therefore, this study investigates phenylalanine kinetics in response to variations in prior protein intake. Healthy adult subjects were each fed nutritionally adequate mixed diets containing 0.8, 1.4 and 2.0 g protein. kg-1. d-1 for 2 d. On d 3, subjects consumed an amino acid-based formula diet containing the equivalent of 1 g protein. kg-1. d-1 hourly for 10 h and primed hourly oral doses of L-[1-13C]phenylalanine for the final 6 h. Phenylalanine kinetics were calculated from plasma-free phenylalanine enrichment and breath 13CO2 excretion. A significant quadratic response of prior protein intake on phenylalanine flux (P = 0.012) and oxidation (P = 0.009) was identified, such that both variables were lower following adaptation to a protein intake of 1.4 g. kg-1. d-1. We conclude that variations in protein intake, between 0.8 and 2.0 g. kg-1. d-1, prior to the study day may affect amino acid kinetics and; therefore, it is prudent to continue to control protein intake prior to an amino acid kinetics study.  (+info)

Energy depletion differently affects membrane transport and intracellular metabolism of riboflavin taken up by isolated rat enterocytes. (39/127079)

Isolated rat enterocytes, both normal and those de-energized with rotenone, were used to study the energy dependence of membrane and intracellular intestinal riboflavin transport in vitro. Membrane and intracellular transport were investigated by using short (3 min) and long (20 min) incubation times, respectively. For both types of cells and incubation times, [3H]-riboflavin uptake presented a saturable component prevailing at physiologic intraluminal concentrations. At 3 min incubation, saturable [3H]-riboflavin transport was apparently an energy-independent process with high affinity and low capacity. Values of the saturable component and its apparent constants, Km and Jmax, did not differ in normal and de-energized enterocytes. At 20 min incubation, saturable [3H]-riboflavin transport was a strictly energy-dependent process in which values of the saturable component were significantly greater in normal than in de-energized enterocytes. Km values did not differ in the two types of cells and were unmodified over 3 min, whereas in normal enterocytes, Jmax at 20 min [6.25 +/- 0.2 pmol/(mg protein. 20 min)] was significantly greater than at 3 min [2.67 +/- 0.33 pmol/(mg protein. 3 min)] and compared with de-energized enterocytes at 20 min [2.54 +/- 0.16 pmol/(mg protein. 20 min)]. Both membrane and intracellular events were inhibited by unlabeled riboflavin and analogs, which are good substrates for flavokinase, thus demonstrating the paramount role of this enzyme in riboflavin intestinal transport.  (+info)

Phe161 and Arg166 variants of p-hydroxybenzoate hydroxylase. Implications for NADPH recognition and structural stability. (40/127079)

Phe161 and Arg166 of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens belong to a newly discovered sequence motif in flavoprotein hydroxylases with a putative dual function in FAD and NADPH binding [1]. To study their role in more detail, Phe161 and Arg166 were selectively changed by site-directed mutagenesis. F161A and F161G are catalytically competent enzymes having a rather poor affinity for NADPH. The catalytic properties of R166K are similar to those of the native enzyme. R166S and R166E show impaired NADPH binding and R166E has lost the ability to bind FAD. The crystal structure of substrate complexed F161A at 2.2 A is indistinguishable from the native enzyme, except for small changes at the site of mutation. The crystal structure of substrate complexed R166S at 2.0 A revealed that Arg166 is important for providing an intimate contact between the FAD binding domain and a long excursion of the substrate binding domain. It is proposed that this interaction is essential for structural stability and for the recognition of the pyrophosphate moiety of NADPH.  (+info)