Role for the Rac1 exchange factor Vav in the signaling pathways leading to NK cell cytotoxicity. (25/9720)

Here we investigate the activation of and a possible role for the hematopoietic Rac1 exchange factor, Vav, in the signaling mechanisms leading to NK cell-mediated cytotoxicity. Our data show that direct contact of NK cells with a panel of sensitive tumor targets leads to a rapid and transient tyrosine phosphorylation of Vav and to its association with tyrosine-phosphorylated Syk. Vav tyrosine phosphorylation is also observed following the activation of NK cells through the low-affinity Fc receptor for IgG (Fc gamma RIII). In addition, we demonstrate that both direct and Ab-mediated NK cell binding to target cells result in the activation of nucleotide exchange on endogenous Rac1. Furthermore, Vav antisense oligodeoxynucleotide treatment leads to an impairment of NK cytotoxicity, with Fc gamma RIII-mediated killing being more sensitive to the abrogation of Vav expression. These results provide new insight into the signaling pathways leading to cytotoxic effector function and define a role for Vav in the activation of NK cell-mediated killing.  (+info)

Differential roles of N- and C-terminal immunoreceptor tyrosine-based inhibition motifs during inhibition of cell activation by killer cell inhibitory receptors. (26/9720)

Killer cell inhibitory receptors (KIRs) inhibit NK and T cell cytotoxicity when recognizing MHC class I molecules on target cells. They possess two tandem intracytoplasmic immunoreceptor tyrosine-based inhibition motifs (ITIMs) that, when phosphorylated, each bind to the two Src homology 2 domain-bearing protein tyrosine phosphatases SHP-1 and SHP-2 in vitro. Using chimeric receptors having an intact intracytoplasmic KIR domain bearing both ITIMs (N + C-KIR), a deleted domain containing the N-terminal ITIM only (N-KIR), or a deleted domain containing the C-terminal ITIM only (C-KIR), we examined the respective contributions of the two ITIMs in the inhibition of cell activation in two experimental models (a rat mast cell and a mouse B cell line) that have been widely used to analyze KIR functions. We found that the two KIR ITIMs play distinct roles. When coaggregated with immunoreceptor tyrosine-based activation motif-bearing receptors such as high-affinity IgE receptors or B cell receptors, the N + C-KIR and the N-KIR chimeras, but not the C-KIR chimera, inhibited mast cell and B cell activation, became tyrosyl-phosphorylated, and recruited phosphatases in vivo. The N + C-KIR chimera recruited SHP-1 as expected, but also SHP-2. Surprisingly, the N-KIR chimera failed to recruit SHP-1; however, it did recruit SHP-2. Consequently, the N-terminal ITIM is sufficient to recruit SHP-2 and to inhibit cell activation, whereas the N-terminal and the C-terminal ITIMs are both necessary to recruit SHP-1. The two KIR ITIMs, therefore, are neither mandatory for inhibition nor redundant. Rather than simply amplifying inhibitory signals, they differentially contribute to the recruitment of distinct phosphatases that may cooperate to inhibit cell activation.  (+info)

Recruitment of pleckstrin and phosphoinositide 3-kinase gamma into the cell membranes, and their association with G beta gamma after activation of NK cells with chemokines. (27/9720)

The role of phosphoinositide 3 kinases (PI 3-K) in chemokine-induced NK cell chemotaxis was investigated. Pretreatment of NK cells with wortmannin inhibits the in vitro chemotaxis of NK cells induced by lymphotactin, monocyte-chemoattractant protein-1, RANTES, IFN-inducible protein-10, or stromal-derived factor-1 alpha. Introduction of inhibitory Abs to PI 3-K gamma but not to PI 3-K alpha into streptolysin O-permeabilized NK cells also inhibits chemokine-induced NK cell chemotaxis. Biochemical analysis showed that within 2-3 min of activating NK cells, pleckstrin is recruited into NK cell membranes, whereas PI 3-K gamma associates with these membranes 5 min after stimulation with RANTES. Recruited PI 3-K gamma generates phosphatidylinositol 3,4,5 trisphosphate, an activity that is inhibited upon pretreatment of NK cells with wortmannin. Further analysis showed that a ternary complex containing the beta gamma dimer of G protein, pleckstrin, and PI 3-K gamma is formed in NK cell membranes after activation with RANTES. The recruitment of pleckstrin and PI 3-K gamma into NK cell membranes is only partially inhibited by pertussis toxin, suggesting that the majority of these molecules form a complex with pertussis toxin-insensitive G proteins. Our results may have application for the migration of NK cells toward the sites of inflammation.  (+info)

Endotoxin fails to induce IFN-gamma in endotoxin-tolerant mice: deficiencies in both IL-12 heterodimer production and IL-12 responsiveness. (28/9720)

Mice exposed to sublethal endotoxemia develop short-term endotoxin tolerance, a state characterized by decreased monokine production and enhanced protection against endotoxic lethality. We confirmed that TNF-alpha production is markedly impaired in endotoxin-tolerant mice and additionally found 2- to 6-fold decreases in serum IFN-gamma in these animals following endotoxin challenge. The IFN-gamma deficiency of endotoxin tolerance correlated with 8-fold decreases in the bioactive p40/p35 heterodimeric form of IL-12. In contrast, total circulating IL-12 p40 was reduced by only 30-50%. Endotoxin-tolerant mice were less responsive to IL-12 than control mice, as evidenced by 3-fold lower levels of IFN-gamma inducible in vivo when rIL-12 was administered at the time of endotoxin challenge. Similarly, spleen cell cultures of endotoxin-tolerant mice produced 3-fold less IFN-gamma in the presence of optimal concentrations of both IL-12 and IL-18. Finally, levels of IL-12R beta 2 subunit mRNA and the percent composition of NK lymphocytes in the spleen were both decreased in endotoxin-tolerant mice relative to controls. We conclude that endotoxin-tolerant mice are profoundly impaired in their ability to produce IFN-gamma in response to endotoxin and that this is associated with acquired defects in both the production of circulating IL-12 heterodimer response and the response to IL-12 by NK cells.  (+info)

Lysis of tumor cells by natural killer cells in mice is impeded by platelets. (29/9720)

Natural killer (NK) cells provide effective antitumoral activity in the blood stream of mice, leading to reduced metastasis. There are, however, tumor cells that metastasize despite the presence of an intact NK system. The capability of tumor cells to induce platelet aggregation, on the other hand, correlates with their enhanced metastatic potential. A counteractive role of platelets for the NK function in metastasis has never been conceived. Here we demonstrate for the first time that platelets directly protect tumor cells from NK lysis in vitro as well as in vivo. Using three different tumor cell lines in a mouse model of experimental metastasis, tumor seeding in the target organs was reduced when the host was platelet depleted, but only if the tumor cells were NK sensitive. Aggregation of platelets around tumor cells also inhibited in vitro NK tumorilytic activity. This protection of tumor cells by platelets was mouse strain independent and was equally observed with platelets from beta2-microglobulin-deficient mice, excluding a NK inhibitory function of MHC class I on platelets. Thus, even if tumor cells are NK susceptible and cytotoxic NK cells threaten their survival in the blood, platelets are capable of protecting them from cytolysis, thereby promoting metastasis. Surface shielding by platelet aggregates seems to be the main mechanism of this protection.  (+info)

Crystal structure of the HLA-Cw3 allotype-specific killer cell inhibitory receptor KIR2DL2. (30/9720)

Killer cell inhibitory receptors (KIR) protect class I HLAs expressing target cells from natural killer (NK) cell-mediated lysis. To understand the molecular basis of this receptor-ligand recognition, we have crystallized the extracellular ligand-binding domains of KIR2DL2, a member of the Ig superfamily receptors that recognize HLA-Cw1, 3, 7, and 8 allotypes. The structure was determined in two different crystal forms, an orthorhombic P212121 and a trigonal P3221 space group, to resolutions of 3.0 and 2.9 A, respectively. The overall fold of this structure, like KIR2DL1, exhibits K-type Ig topology with cis-proline residues in both domains that define beta-strand switching, which sets KIR apart from the C2-type hematopoietic growth hormone receptor fold. The hinge angle of KIR2DL2 is approximately 80 degrees, 14 degrees larger than that observed in KIR2DL1 despite the existence of conserved hydrophobic residues near the hinge region. There is also a 5 degrees difference in the observed hinge angles in two crystal forms of 2DL2, suggesting that the interdomain hinge angle is not fixed. The putative ligand-binding site is formed by residues from several variable loops with charge distribution apparently complementary to that of HLA-C. The packing of the receptors in the orthorhombic crystal form offers an intriguing model for receptor aggregation on the cell surface.  (+info)

Characterization of inhibitory and stimulatory forms of the murine natural killer cell receptor 2B4. (31/9720)

The receptor 2B4 belongs to the Ig superfamily and is found on the surface of all murine natural killer (NK) cells as well as T cells displaying non-MHC-restricted cytotoxicity. Previous studies have suggested that 2B4 is an activating molecule because cross-linking of this receptor results in increased cytotoxicity and gamma-interferon secretion as well as granule exocytosis. However, it was recently shown that the gene for 2B4 encodes two different products that arise by alternative splicing. These gene products differ solely in their cytoplasmic domains. One form has a cytoplasmic tail of 150 amino acids (2B4L) and the other has a tail of 93 amino acids (2B4S). To determine the function of each receptor, cDNAs for 2B4S and 2B4L were transfected into the rat NK cell line RNK-16. Interestingly, the two forms of 2B4 had opposing functions. 2B4S was able to mediate redirected lysis of P815 tumor targets, suggesting that this form represents an activating receptor. However, 2B4L expression led to an inhibition of redirected lysis of P815 targets when the mAb 3.2.3 (specific for rat NKRP1) was used. In addition, 2B4L constitutively inhibits lysis of YAC-1 tumor targets. 2B4L is a tyrosine phosphoprotein, and removal of domains containing these residues abrogates its inhibitory function. Like other inhibitory receptors, 2B4L associates with the tyrosine phosphatase SHP-2. Thus, 2B4L is an inhibitory receptor belonging to the Ig superfamily.  (+info)

Natural killer cell activity in the peripheral blood of patients with Cushing's syndrome. (32/9720)

BACKGROUND: Natural killer (NK) cells are CD3(-)CD16(+)CD56(+) bone-marrow-derived lymphocytes mediating first-line defence by direct cytotoxicity against various types of target cells without prior immunization. NK cell activity is positively regulated by immune interferon (IFN-gamma); among hormones, glucocorticoids are potent in vitro and in vivo inhibitors, whereas ACTH and beta-endorphin in many experimental circumstances enhance NK cytotoxicity. DESIGN: We measured NK cytotoxicity of peripheral blood mononuclear cells (PBMC) obtained at 0800h and 2000h from 26 patients with Cushing's syndrome (12 pituitary-dependent, 12 adrenal-dependent and two dependent on ectopic ACTH secretion). In vitro responsiveness to IFN-gamma or cortisol was also tested. METHODS: NK activity was measured in a 4-h direct cytotoxicity assay using K562 cells as targets. Plasma ACTH, serum and urinary free cortisol were concomitantly measured with commercially available kits. RESULTS: Spontaneous activity and responsiveness to IFN-gamma or cortisol were significantly greater in 15 age- and sex-matched controls than in Cushing's patients at 0800h. In pituitary-dependent Cushing's patients, plasma ACTH correlated positively with mean levels of spontaneous NK activity (r=0.64, P<0.05) and negatively with cortisol-dependent percentage inhibition (r=-0.69, P<0.02). In adrenal-dependent Cushing's patients, a negative correlation was observed between levels of spontaneous NK activity and urinary free cortisol (r=-0.67, P<0.02). CONCLUSIONS: Our data indicate that excess endogenous glucocorticoids affect spontaneous NK cell activity and responsiveness to exogenous IFN-gamma or cortisol. The differential patterns observed between pituitary-dependent and adrenal-dependent groups are compatible with a positive immunomodulatory role of pituitary pro-opiomelanocortin-derived peptides that effectively counterbalance, at least partially, glucocorticoid immunosuppression.  (+info)