(1/7998) Methoxyflurane nephropathy.

Investigations of methoxyflurane-induced nephrotoxicity in man have been extensively aided by the use of an animal model. To be of value the animal model must share similar metabolic pathways with man and have the same clinical manifestations of the diseases process. The Fischer 344 rat appears to meet these criteria. The predominant factors in the production of methoxyflurane nephrotoxicity appear to be high methoxyflurane dosage and serum inorganic fluoride concentration. It is likely that secondary factors include: (1) a high rate of methoxyflurane metabolism and sepsitivity of the kidney to inorganic fluoride toxicity: (2) concurrent treatment with other nephrotoxic drugs; (3) preexisting renal disease; (4) surgery of the urogenital tract, aorta, or renal vasculative; (5) repeat administration of methoxyflurane due to accumulation of inorganic fluoride and, perhaps, methoxyflurane induction of its own metabolism: and (6) concurrent treatment with enzyme-inducing drugs such as phenobarbital.  (+info)

(2/7998) Perinatal nephropathies.

The purpose of this paper is to review the development of the mammalian kidney and to assess the influence that various perinatal manipulations may have on the developmental process either morphologically or functionally. Immature kidneys in general have less functional capacity than adult kidneys and a low rate of glomerular filtration, perhaps related to renal blood flow, which appears to limit the disposition of a fluid or solute load. Tubular reabsorption is also limited leading to the urinary loss of glucose, amino acids, bicarbonate and phosphate. Although the relatively low function of the immature kidney is a normal part of development, its capacity to respond under conditions of stress may be less adequate than in adults. An additional concern is that a variety of perinatal manipulations, such as the incidental or accidental ingestion of a chemical, may lead to varying degrees of altered morphogenesis or functional development of the kidney. Chemical induced renal anomalies may be of several types, but in typical teratology experiments hydronephrosis may be the most frequent observation. The functional consequences of these renal malformations may be lethal or inconsequential or while an animal may be able to survive and develop normally in the presence of a renal malformation, it is possible that a stressful situation would unmask a functional malformation which could compromise survival. Thus, some renal abnormalities may be subtle enough to go unnoticed without experimental tests. Without such tests it is impossible to evaluate the effect of functional alterations on successful adaptation.  (+info)

(3/7998) Renal function tests: what do they mean? A review of renal anatomy, biochemistry, and physiology.

Renal physiology, biochemistry, and anatomy are reviewed. For the most part, those aspects of these disciplines will be discussed which relate directly to the question of the evaluation of nephrotoxicity. In addition, emphasis is placed on those procedures and techniques which are useful in the evaluation of nephrotoxicity. A detailed discussion of histological and anatomical considerations is not given, since this is probably the least useful criterion for evaluation of renal damage. This information is intended as background for the remainder of the symposium which will be directed toward an understanding of specific nephrotoxicity phenomena.  (+info)

(4/7998) Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men.

Angiotensin type 2 receptor gene null mutant mice display congenital anomalies of the kidney and urinary tract (CAKUT). Various features of mouse CAKUT impressively mimic human CAKUT. Studies of the human type 2 receptor (AGTR2) gene in two independent cohorts found that a significant association exists between CAKUT and a nucleotide transition within the lariat branchpoint motif of intron 1, which perturbs AGTR2 mRNA splicing efficiency. AGTR2, therefore, has a significant ontogenic role for the kidney and urinary tract system. Studies revealed that the establishment of CAKUT is preceded by delayed apoptosis of undifferentiated mesenchymal cells surrounding the urinary tract during key ontogenic events, from the ureteral budding to the expansive growth of the kidney and ureter.  (+info)

(5/7998) The inhibition of myeloperoxidase by ceruloplasmin can be reversed by anti-myeloperoxidase antibodies.

BACKGROUND: The purpose of this study was to characterize the recently reported inhibition of myeloperoxidase (MPO) by ceruloplasmin and to determine whether this may be disturbed in the presence of anti-MPO antibodies. METHODS: Specificity of the binding between ceruloplasmin and MPO was confirmed by Western blotting and enzyme-linked immunosorbent assay (ELISA), and the enzymatic activity of MPO was measured in the presence of ceruloplasmin, affinity-purified anti-MPO antibodies, or both. The affinity of the binding between MPO and ceruloplasmin and MPO and the anti-MPO antibodies was measured using a biosensor, with the results confirmed by chaotrope ELISA. RESULTS: Affinity-purified anti-MPO antibodies from patients with microscopic polyangiitis and florid renal vasculitis inhibited the binding between ceruloplasmin and MPO to a maximum of 72.9 +/- 12.8%, whereas those from patients with Wegener's granulomatosis and only minimal renal involvement inhibited the binding to a maximum of only 36.8 +/- 10.9% (P < 0. 001), with comparable reversal of the ceruloplasmin-mediated inhibition of MPO activity. Measurement of the affinity of the interactions demonstrated that binding between MPO and the anti-MPO antibodies is stronger than that between MPO and ceruloplasmin (1.61 x 107 to 1.33 x 108 vs. 7.46 x 106 m-1), indicating that binding to the autoantibody would be favored in vivo. CONCLUSIONS: This study confirms a role for ceruloplasmin as a physiological inhibitor of MPO, and demonstrates how the inhibition may be disrupted in the presence of anti-MPO antibodies. Because a majority (16 of 21) of the antibodies did not themselves inhibit MPO activity, their interference with the inhibition mediated by ceruloplasmin may be brought about by steric hindrance consequent upon the binding of the antibody to a dominant epitope at or near the active site.  (+info)

(6/7998) Expression of bcl-2 and bax in glomerular disease.

Bcl-2 may account in part for the maintenance of hypercellularity in human glomerular diseases through preventing cell death and by counteracting bax which may be expressed to regulate excessive proliferation. This process is associated with the effect of PDGF B-chain expression. Bax expression may be important in the cell loss leading to glomerulosclerosis and TGF-beta1 participates in this process by increasing bax expression. Thus, the balance of bcl-2/bax expression may be critical in the course of human glomerular diseases.  (+info)

(7/7998) Effect of fasting on temporal variation in the nephrotoxicity of amphotericin B in rats.

Evidence for temporal variation in the nephrotoxicity of amphotericin B was recently reported in experimental animals. The role of food in these variations was determined by studying the effect of a short fasting period on the temporal variation in the renal toxicity of amphotericin B. Twenty-eight normally fed and 28 fasted female Sprague-Dawley rats were used. Food was available ad libitum to the fed rats, while the fasted animals were fasted 12 h before and 24 h after amphotericin B injection to minimize stress for the animals. Water was available ad libitum to both groups of rats, which were maintained on a 14-h light, 10-h dark regimen (light on at 0600 h). Renal toxicity was determined by comparing the levels of excretion of renal enzyme and the serum creatinine and blood urea nitrogen (BUN) levels at the time of the maximal (0700 h) or the minimal (1900 h) nephrotoxicity after the intraperitoneal administration of a single dose of dextrose (5%; control group) or amphotericin B (50 mg/kg of body weight; treated group) to the rats. The nephrotoxicities obtained after amphotericin B administration at both times of day were compared to the nephrotoxicities observed for time-matched controls. In fed animals, the 24-h urinary excretion of N-acetyl-beta-D-glucosaminidase and beta-galactosidase was significantly higher when amphotericin B was injected at 0700 and 1900 h. The excretion of these two enzymes was reduced significantly (P < 0.05) in fasting rats, and this effect was larger at 0700 h (P < 0.05) than at 1900 h. The serum creatinine level was also significantly higher (P < 0.05) in fed animals treated at 0700 h than in fed animals treated at 1900 h. Fasting reduced significantly (P < 0.05) the increase in the serum creatinine level, and this effect was larger in the animals treated at 0700 h. Similar data were obtained for BUN levels. Amphotericin B accumulation was significantly higher (P < 0.05) in the renal cortexes of fed rats than in those of fasted animals, but there was no difference according to the time of injection. These results demonstrated that fasting reduces the nephrotoxicity of amphotericin B and that food availability is of crucial importance in the temporal variation in the renal toxicity of amphotericin B in rats.  (+info)

(8/7998) Angiotensin converting enzyme inhibitors and angiotensin receptor (AT1) antagonists: either or both for primary renal disease?

At the present time we cannot assume that the proven benefits of ACEI on renal disease will be reproduced by using AT1-ra. With potentially differing modes of activity of these drugs, they cannot be seen as interchangeable and ACEI should remain the drug of choice in patients with progressive renal disease unless they are not tolerated. It is possible that AT1-ra may offer additional advantages in some patients or that synergy exists between the two agents, but this view will remain entirely speculative unless proper trials are conducted. Despite the results of the ELITE study [22], the uncertainty regarding the use AT1-ra in cardiovascular disease mirrors that of renal disease. This issue is obviously of relevance to the nephrologist in view of the spectrum of cardiac disease that accompanies chronic renal failure, such as left ventricular hypertrophy and cardiac failure, which provide multiple indications for manipulation of RAS. Despite their renoprotective effect, previous studies on ACEI [3,4] have not shown an overall reduction in mortality and this issue needs to be addressed in addition to renoprotection in studies comparing AT1-ra and ACEI.  (+info)