HCO-3 reabsorption in renal collecting duct of NHE-3-deficient mouse: a compensatory response. (33/2120)

Mice with a targeted disruption of Na+/H+ exchanger NHE-3 gene show significant reduction in HCO-3 reabsorption in proximal tubule, consistent with the absence of NHE-3. Serum HCO-3, however, is only mildly decreased (P. Schulties, L. L. Clarke, P. Meneton, M. L. Miller, M. Soleimani, L. R. Gawenis, T. M. Riddle, J. J. Duffy, T. Doetschman, T. Wang, G. Giebisch, P. S. Aronson, J. N. Lorenz, and G. E. Shull. Nature Genet. 19: 282-285, 1998), indicating possible adaptive upregulation of HCO-3-absorbing transporters in collecting duct of NHE-3-deficient (NHE-3 -/-) mice. Cortical collecting duct (CCD) and outer medullary collecting duct (OMCD) were perfused, and total CO2 (net HCO-3 flux, JtCO2) was measured in the presence of 10 microM Schering 28080 (SCH, inhibitor of gastric H+-K+-ATPase) or 50 microM diethylestilbestrol (DES, inhibitor of H+-ATPase) in both mutant and wild-type (WT) animals. In CCD, JtCO2 increased in NHE-3 mutant mice (3.42 +/- 0.28 in WT to 5.71 +/- 0.39 pmol. min-1. mm tubule-1 in mutants, P < 0.001). The SCH-sensitive net HCO-3 flux remained unchanged, whereas the DES-sensitive HCO-3 flux increased in the CCD of NHE-3 mutant animals. In OMCD, JtCO2 increased in NHE-3 mutant mice (8.8 +/- 0.7 in WT to 14.2 +/- 0.6 pmol. min-1. mm tubule-1 in mutants, P < 0.001). Both the SCH-sensitive and the DES-sensitive HCO-3 fluxes increased in the OMCD of NHE-3 mutant animals. Northern hybridizations demonstrated enhanced expression of the basolateral Cl-/HCO-3 exchanger (AE-1) mRNA in the cortex. The gastric H+-K+-ATPase mRNA showed upregulation in the medulla but not the cortex of NHE-3 mutant mice. Our results indicate that HCO-3 reabsorption is enhanced in CCD and OMCD of NHE-3-deficient mice. In CCD, H+-ATPase, and in the OMCD, both H+-ATPase and gastric H+-K+-ATPase contribute to the enhanced compensatory HCO-3 reabsorption in NHE-3-deficient animals.  (+info)

Evaluation of changes in intrarenal oxygenation in rats using multiple gradient-recalled echo (mGRE) sequence. (34/2120)

Changes in intrarenal oxygenation in rats during pharmacological stimuli were evaluated with a multiple gradient-recalled echo (mGRE) sequence. With administration of the loop diuretic furosemide, oxygenation in the medulla improved; acetazolamide, a proximal tubular diuretic, produced no significant change. These results are consistent with our previous studies in humans and resemble earlier studies of medullary oxygenation using oxygen microelectrodes in anesthetized rats. The technique may be useful in the evaluation of therapeutic strategies in animal models of pathophysiological states such as acute renal failure.  (+info)

Altered pressure-natriuresis in obese Zucker rats. (35/2120)

It has not been examined whether the pressure-natriuresis response is altered in the insulin-resistant condition. Furthermore, despite an important role of nitric oxide (NO) in modulating pressure-natriuresis, no investigations have been conducted assessing the renal interstitial NO production in insulin resistance. The present study examined whether pressure-natriuresis was altered in insulin-resistant obese Zucker rats (OZ) and assessed the cortical and medullary nitrate/nitrite (NOx) levels with the use of the renal microdialysis technique. In OZ, serum insulin/glucose ratio (23.0+/-4.0x10(-8), n=9) and blood pressure (119+/-3 mm Hg) were greater than those in lean Zucker rats (LZ; 7.0+/-1.9x10(-8) and 103+/-4 mm Hg, n=9). The pressure-natriuresis curve in OZ was shifted to higher renal perfusion pressure (RPP), and the slope was blunted compared with that in LZ (0.073+/-0.015 vs 0.217+/-0.047 microEq/min kidney weight/mm Hg, P<0.05). The basal renal NOx level was reduced in OZ (cortex, 4.032+/-0.331 micromol/L; medulla, 4. 329+/-0.515 micromol/L) compared with that in LZ (cortex, 7.315+/-1. 102 micromol/L; medulla: 7.698+/-0.964 micromol/L). Furthermore, elevating RPP increased the medullary NOx in LZ, but this pressure-induced response was lost in OZ. Four-week treatment with troglitazone, an insulin-sensitizing agent, improved hyperinsulinemia, systemic hypertension, and basal renal NOx levels (cortex, 5.639+/-0.286 micromol/L; medulla, 5.978+/-0.284 micromol/L), and partially ameliorated the pressure-natriuresis curves; the slope of pressure-natriuresis curves and elevated RPP-induced NOx, however, were not corrected. In conclusion, our study suggests that insulin resistance is closely associated with abnormal pressure-natriuresis and hypertension. These deranged renal responses to insulin resistance are most likely attributed to impaired medullary NO production within the medulla.  (+info)

Effects of long-term application of dopamine HCl on dopamine agonist-induced cAMP production in rat renal cortex. (36/2120)

AIM: To study the effects of long-term application of dopamine HCl (DA) on the functional changes of dopamine receptor subtypes coupled to adenyl cyclase in rat renal cortex. METHODS: cAMP levels were measured by radioimmunoassay as an index of dopamine receptor function. RESULTS: Injection of DA (30 mg.kg-1.d-1, i.p. 30 d) reduced the fenoldopam (Fen) (100 mumol.L-1)-induced increments of cAMP production from the control group of +1.26 +/- 0.04 to the DA-treated group of +0.63 +/- 0.22 nmol.min-1/g tissue and the propyl-butyl-dopamine (PBDA) (100 mumol.L-1)-induced decrements of cAMP production in the presence of Sch-23390 (Sch) from the control group of -0.38 +/- 0.18 to the DA-treated group of -0.11 +/- 0.08 nmol.min-1/g tissue with, however, comparable percentile changes for the 2 groups. Sch blocked both Fen- and PBDA-induced increase in cAMP production, while domperidone (Dom) blocked the decreasing effects of PBDA on cAMP accumulation in the presence of Sch. CONCLUSION: Long-term application of DA produced a marked "down regulation" of both DA1 and DA2 receptors in rat renal cortex with, however, the responsiveness of the remaining receptors unchanged.  (+info)

Tetraethylammonium and amantadine identify distinct organic cation transporters in rat renal cortical proximal and distal tubules. (37/2120)

Tetraethylammonium (TEA) and amantadine are two organic cations that are secreted by the kidney. It appears that each cation may characterize distinct renal tubule organic cation transport pathways. To test this hypothesis, we investigated the renal proximal and distal tubule energy-dependent transport properties of TEA and amantadine. Isolated tubules were incubated at 25 degrees C in bicarbonate buffer (Krebs-Henseleit solution) and nonbicarbonate buffer (Cross-Taggart) with varying concentrations of [14C]TEA or [3H]amantadine to determine initial rates of energy-dependent uptake of TEA and amantadine, respectively. The uptake of TEA could best be described by two transport sites, a high-affinity site and a lower affinity site. TEA uptake was not influenced by the presence of bicarbonate. Consistent with our previously reported data, amantadine uptake could also be described by two transport sites, a high-affinity-capacity site that is bicarbonate-dependent and a lower-affinity-capacity transport site that is bicarbonate-independent. The renal tubule uptake of amantadine into proximal and distal tubules, in Krebs-Henseleit solution or Cross-Taggart buffers, was not inhibited by 10 to 1000 microM of TEA. However, tubule accumulation of TEA could be inhibited (>90%) by amantadine in proximal and distal tubules in Krebs-Henseleit solution and Cross-Taggart buffers. In proximal tubules, N1-methylnicotinamide was not able to inhibit amantadine uptake but it reduced TEA uptake by 60 to 70% at similar concentrations. These data support the existence of multiple renal tubule organic cation transporters that have different substrate affinity and controlling mechanisms. It is also apparent that amantadine characterizes organic cation transporters that are distinct from those characterized by TEA.  (+info)

Chronic effects of lovastatin and bezafibrate on cortical and medullary hemodynamics in deoxycorticosterone acetate-salt hypertensive mice. (38/2120)

Cholesterol synthesis inhibitors and fibrates both exercise effects that could influence BP and renal function in hypertension. To test this issue, transit-time ultrasound flow probes, implanted optical fibers, and laser-Doppler flowmetry were used for measurements of total and regional renal blood flows in lovastatin (40 mg/kg body wt) and bezafibrate (50 mg/kg body wt) chronically treated deoxycorticosterone acetate (DOCA)-salt hypertensive mice. Total renal blood flow was well autoregulated between 70 and 150 mmHg (approximately 3.5 ml/min per g kidney weight in DOCA-salt mice). Both lovastatin and bezafibrate increased renal blood flow to a range between 4.7 and 5.5 ml/min per g kidney weight. In the renal perfusion pressure ranges investigated, renal vascular resistance increased in lovastin- and bezafibrate-treated DOCA-salt mice, but not as steeply as in vehicle-treated DOCA-salt mice. During a stepwise increase in renal perfusion pressure in lovastatin-treated DOCA-salt mice, medullary blood flow increased up to 130% of baseline values, which was not seen in vehicle- or bezafibrate-treated mice. After extracellular volume expansion with 1% saline, 1 ml over 1 min, total renal blood flow was also higher in lovastatin- or bezafibrate-treated DOCA-salt mice, whereas medullary blood flow increased more steeply in lovastatin-, compared with bezafibrate- or vehicle-treated mice. Systemic BP was significantly decreased in lovastatin-treated DOCA-salt mice compared with vehicle-treated mice. Lovastatin prevented histologic evidence for hemostasis in the medullary circulation of DOCA-salt mice. The results suggest that both lovastatin and bezafibrate diminished DOCA-salt-induced reductions in total renal blood flow. Lovastatin also abolished the perturbed medullary blood flow reactions to increased perfusion pressure or to volume expansion. Finally, lovastatin decreased systemic BP in DOCA-salt mice. These data suggest that cholesterol synthesis inhibition or fibrate treatment improve disturbed renal function in a mouse model of salt-dependent hypertension.  (+info)

Inhibition of nuclear factor-kappaB activation reduces cortical tubulointerstitial injury in proteinuric rats. (39/2120)

BACKGROUND: Protein-induced chemokine expression in proximal tubular cells is mediated by the transcription factor nuclear factor-kappa B (NF-kappaB). We hypothesized that in vivo inhibition of renal NF-kappaB activation would reduce interstitial monocyte infiltration in a rat model of nonimmune proteinuric tubulointerstitial inflammation. METHODS: Male Wistar rats received a single intravenous injection of doxorubicin hydrochloride [adriamycin (ADR), 7.5 mg/kg] and were studied 7, 14, 21, and 28 days later. In a second study, inhibitors of NF-kappaB [N-acetylcysteine (NAC; 150 mg/kg, b.i.d., i.p.), pyrrolidine dithiocarbamate (PDTC, 50 mg/kg, b. i.d., i.p.)] or vehicle were commenced on day 14 after the onset of proteinuria and were continued until day 30. RESULTS: Rats injected with ADR had increased proteinuria (UpV, day 28, 474 +/- 57; control, 18 +/- 2 mg/day; P < 0.01) and cortical tubulointerstitial injury [tubule cell atrophy, interstitial volume, and monocyte/macrophage (ED-1) infiltration]. Electrophoretic mobility shift assay of nuclear extracts from whole cortex of ADR rats demonstrated that NF-kappaB activation (p50/65, p50/c-Rel) increased from day 7 (4.7 +/- 0.2 fold-increase above control; P < 0.01) was maximal at day 28 (6.2 +/- 0.7; P < 0.01) and correlated with UpV (r = 0.63; P < 0.05) and interstitial ED-1 infiltration (r = 0.67; P < 0.01). Chronic treatment of ADR rats with PDTC suppressed NF-kappaB activation (by 73%; P < 0.05) without any effect on UpV. NF-kappaB inhibition with PDTC was accompanied by a reduction in tubule cell atrophy (59%; P < 0.01), interstitial volume (49%; P < 0.05) and ED-1 infiltration (48%; P < 0.01), and cortical lipid peroxidation (41%; P < 0.05) compared with vehicle-treated ADR rats. In contrast NAC had no effect on NF-kappaB activation, tubulointerstitial injury, or UpV in ADR rats. CONCLUSION: The activation of NF-kappaB may have an important role in mediating cortical interstitial monocyte infiltration and tubular injury in nonimmune proteinuric tubulointerstitial inflammation.  (+info)

Surgical stress increases renal glutathione content via increased glucocorticoid, and resistance to subsequent oxidative injury in the rat: significant link between endocrine response and cell defense system under the stress. (40/2120)

Systemic and nonspecific stress response effects on the cellular defense mechanism were studied in the male rat kidney. Two days after laparotomy-induced surgical stress, rats showed increased serum corticosterone and renal cortical reduced glutathione (GSH). Rats were then injected s.c. with mercuric chloride (HgCl2) to oxidatively injure renal tubuli. Increased serum creatinine levels indicated that laparotomy pretreatment lessened renal damage. To study the effects of the activated pituitary-adrenal axis on renal cortical GSH content and vulnerability to subsequent oxidative injury, rats were injected s.c. with ACTH on two consecutive days. ACTH administration increased both corticosterone and aldosterone. These rats showed increased, dose-dependent renal cortical GSH content, i.e., controls (n=7): 1.25 +/- 0.23 micromol/g tissue, daily dose of 10 microg/100 gBW (n=7): 1.53 +/- 0.24 micromol/g tissue, and daily dose of 40 microg/100 gBW (n=7): 2.31 +/- 0.23 micromol/g tissue. Rats receiving daily doses of 40 microg of ACTH/100 gBW acquired resistance to oxidative injury, indicated by serum creatinine levels: controls (n=6), 22 +/- 4 micromol/L; HgCl2 (n=6), 145 +/- 88 micromol/L; ACTH and HgCl2 (n=6), 37 +/- 11 micromol/L. Morphological evidence indicated that ACTH pretreatment in HgCl2-injected rats prevented renal tissue from inflammatory cell infiltration but not from tubular degeneration. Cellular GSH content of LLC-PK1 cells, porcine renal-tubule-derived culture cells, increased significantly in incubation with dexamethasone or aldosterone, suggesting that adrenal steroids directly stimulate renal cell GSH. We demonstrated that stress or ACTH administration activates the defense mechanism in the kidney via increased GSH. This stress-activatable defense system may therefore indicate a connection between endocrine stress response and the cellular defense mechanism.  (+info)